1. Polyoxazoline-Conjugated l-Asparaginase: An Antibody-Production-Free Therapeutic Agent for Acute Lymphoblastic Leukemia.
- Author
-
Yamada T, Ishimaru M, Shoji T, Tomiyasu H, Tochinai R, Taguchi K, and Komatsu T
- Subjects
- Animals, Rats, Asparaginase therapeutic use, Asparaginase chemistry, Antibody Formation, Asparagine metabolism, Asparagine therapeutic use, Precursor Cell Lymphoblastic Leukemia-Lymphoma drug therapy, Precursor Cell Lymphoblastic Leukemia-Lymphoma metabolism, Precursor Cell Lymphoblastic Leukemia-Lymphoma pathology, Antineoplastic Agents therapeutic use
- Abstract
l-asparaginase (ASNase), an enzyme that catalyzes the hydrolysis of l-asparagine into l-aspartic acid, is frequently used as a medication for acute lymphoblastic leukemia (ALL). However, when derived from bacterial sources, this enzyme can elicit side effects, including allergic or hypersensitivity reactions, owing to immune responses. Here, we describe the synthesis of polyoxazoline-conjugated ASNase (POx-ASNase) and investigate its enzyme activity, anticancer efficacy, immunogenicity, and retention in the bloodstream. The water-soluble POx was coupled with surface lysine residues of ASNase using a bifunctional cross-linker. The average number of polymers bound to each enzyme was determined as 10. Although the enzymatic activity of POx-ASNase decreased to 56% of that of native ASNase, its temperature and pH dependencies remained unaltered. Remarkably, the lyophilized powder form of POx-ASNase retained its catalytic ability for 24 months. POx-ASNase demonstrated nearly identical anticancer efficacy compared to naked ASNase against leukemia and lymphoma cells (MOLT-4, CLBL-1, and K562) while displaying no cytotoxicity toward normal cells. Animal experiments conducted using rats revealed that the POx decoration suppressed the generation of anti-ASNase IgM and IgG antibodies with no detection of anti-POx antibodies. The half-life within the bloodstream extended to 34 h, representing a 17-fold increase compared to unmodified ASNase. These findings suggest that POx-ASNase serves as an anticancer therapeutic agent, characterized by the absence of antibody production and notably extended circulation persistence.
- Published
- 2023
- Full Text
- View/download PDF