1. Learning the RoPEs: Better 2D and 3D Position Encodings with STRING
- Author
-
Schenck, Connor, Reid, Isaac, Jacob, Mithun George, Bewley, Alex, Ainslie, Joshua, Rendleman, David, Jain, Deepali, Sharma, Mohit, Dubey, Avinava, Wahid, Ayzaan, Singh, Sumeet, Wagner, René, Ding, Tianli, Fu, Chuyuan, Byravan, Arunkumar, Varley, Jake, Gritsenko, Alexey, Minderer, Matthias, Kalashnikov, Dmitry, Tompson, Jonathan, Sindhwani, Vikas, and Choromanski, Krzysztof
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Robotics ,Statistics - Machine Learning - Abstract
We introduce STRING: Separable Translationally Invariant Position Encodings. STRING extends Rotary Position Encodings, a recently proposed and widely used algorithm in large language models, via a unifying theoretical framework. Importantly, STRING still provides exact translation invariance, including token coordinates of arbitrary dimensionality, whilst maintaining a low computational footprint. These properties are especially important in robotics, where efficient 3D token representation is key. We integrate STRING into Vision Transformers with RGB(-D) inputs (color plus optional depth), showing substantial gains, e.g. in open-vocabulary object detection and for robotics controllers. We complement our experiments with a rigorous mathematical analysis, proving the universality of our methods., Comment: Videos of STRING-based robotics controllers can be found here: https://sites.google.com/view/string-robotics
- Published
- 2025