579 results on '"Arnedo, Miquel A"'
Search Results
2. Taxonomic accuracy and complementarity between bulk and eDNA metabarcoding provides an alternative to morphology for biological assessment of freshwater macroinvertebrates
- Author
-
Múrria, Cesc, Wangensteen, Owen S., Somma, Simona, Väisänen, Leif, Fortuño, Pau, Arnedo, Miquel A., and Prat, Narcís
- Published
- 2024
- Full Text
- View/download PDF
3. A time-calibrated ‘Tree of Life’ of aquatic insects for knitting historical patterns of evolution and measuring extant phylogenetic biodiversity across the world
- Author
-
García-Girón, Jorge, Múrria, Cesc, Arnedo, Miquel A., Bonada, Núria, Cañedo-Argüelles, Miguel, Derka, Tomáš, Fernández-Calero, Jose María, Li, Zhengfei, Tierno de Figueroa, José Manuel, Xie, Zhicai, and Heino, Jani
- Published
- 2024
- Full Text
- View/download PDF
4. From biomarkers to community composition: Negative effects of UV/chlorine-treated reclaimed urban wastewater on freshwater biota
- Author
-
Múrria, Cesc, Maceda-Veiga, Alberto, Barata, Carlos, Gomà, Joan, Faria, Melissa, Antich, Adrià, Arnedo, Miquel A., Bonada, Núria, and Prat, Narcís
- Published
- 2024
- Full Text
- View/download PDF
5. Mitochondrial discordance in closely related Theridion spiders (Araneae, Theridiidae), with description of a new species of the T. melanurum group
- Author
-
Domènech, Marc, Crespo, Luís Carlos, Enguídanos, Alba, Arnedo, Miquel, and Pensoft Publishers
- Subjects
COI ,Hybridization ,Iberian Peninsula ,incomplete lineage sorting ,Introgression ,ITS2 ,Wolbachia - Published
- 2020
6. 23rd European Colloquium of Arachnology, Barcelona 2006
- Author
-
Ribera, Carles and Arnedo, Miquel A.
- Subjects
congress invitation ,Zoology ,QL1-991 - Abstract
congress invitation
- Published
- 2005
- Full Text
- View/download PDF
7. The Spider Silk Standardization Initiative (S3I): A powerful tool to harness biological variability and to systematize the characterization of major ampullate silk fibers spun by spiders from suburban Sydney, Australia
- Author
-
Blamires, Sean, Lozano-Picazo, Paloma, Bruno, Augusto Luis, Arnedo, Miquel, Ruiz-León, Yolanda, González-Nieto, Daniel, Rojo, Francisco Javier, Elices, Manuel, Guinea, Gustavo Víctor, and Pérez-Rigueiro, José
- Published
- 2023
- Full Text
- View/download PDF
8. The Catalan initiative for the Earth BioGenome Project: contributing local data to global biodiversity genomics.
- Author
-
Corominas, Montserrat, Marquès-Bonet, Tomàs, Arnedo, Miquel A, Bayés, Mònica, Belmonte, Jordina, Escrivà, Hector, Fernández, Rosa, Gabaldón, Toni, Garnatje, Teresa, Germain, Josep, Niell, Manel, Palero, Ferran, Pons, Joan, Puigdomènech, Pere, Project, The Catalan initiative for the Earth BioGenome, Arroyo, Vanesa, Cuevas-Caballé, Cristian, Obiol, Joan Ferrer, Gut, Ivo, and Gut, Marta
- Published
- 2024
- Full Text
- View/download PDF
9. Population genomics of adaptive radiations: Exceptionally high levels of genetic diversity and recombination in an endemic spider from the Canary Islands
- Author
-
Escuer, Paula, primary, Guirao-Rico, Sara, additional, Arnedo, Miquel A., additional, Sanchez-Gracia, Alejandro, additional, and Rozas, Julio, additional
- Published
- 2024
- Full Text
- View/download PDF
10. Monophyly, Taxon Sampling, and the Nature of Ranks in the Classification of Orb-Weaving Spiders (Araneae: Araneoidea)
- Author
-
Kallal, Robert J., Dimitrov, Dimitar, Arnedo, Miquel A., Giribet, Gonzalo, and Hormiga, Gustavo
- Published
- 2020
11. Integrating museum collections and molecules reveals genus-level synonymy and new species in red devil spiders (Araneae, Dysderidae) from the Middle East and Central Asia
- Author
-
Bellvert, Adrià, Dimitrov, Dragomir, Zamani, Alireza, Arnedo, Miquel A., Bellvert, Adrià, Dimitrov, Dragomir, Zamani, Alireza, and Arnedo, Miquel A.
- Abstract
This paper reviews little-known species of the dysderid spider genera Dysdera Latreille, 1804, and Dysderella Dunin, 1992 based on specimens collected in the Caucasus, Middle East, and Central Asia. After combining molecular phylogeny of five mitochondrial and three nuclear genes with morphological evidence, Dysderella is proposed as a junior synonym of Dysdera. In addition, three species are described as new to science: D. jaegeri Bellvert & Dimitrov sp. nov., D. naouelae Bellvert & Dimitrov sp. nov., and D. kourosh Bellvert, Zamani & Dimitrov sp. nov. Four combinations are proposed: Dysdera caspica Dunin, 1990 comb. rev., Dysdera transcaspica Dunin & Fet, 1985 comb. rev., Dysdera elburzica (Zamani, Marusik & Szűts, 2023) comb. nov. and Dysdera sancticedri (Brignoli, 1978) comb. nov. (ex. Dasumia Thorell, 1875). Furthermore, we report a first record of D. festai Caporiacco, 1929 in Turkey and its male cheliceral polymorphism. Our results illustrate the deficiencies that undermine the current taxonomy of this genus. For example, many species are described based on only one or few specimens or limited locality data. The advancements in DNA sequencing technologies applied to museum specimens reduce the need for fieldwork collection and export of fresh specimens. This highlights the significance of museum collections for improving research in this field.
- Published
- 2024
12. Evolutionary insights into the eco-phenotypic diversification of Dysdera spiders in the Canary Islands
- Author
-
Řezáč, Milan, Pekár, Stano, Arnedo, Miquel, Macías-Hernández, Nuria, and Řezáčová, Veronika
- Published
- 2021
- Full Text
- View/download PDF
13. Optimal inventorying and monitoring of taxonomic, phylogenetic and functional diversity.
- Author
-
Cardoso, Pedro, Arnedo, Miquel A., Macías-Hernández, Nuria, Carvalho, William D., Carvalho, José C., and Hilário, Renato
- Subjects
- *
BIODIVERSITY monitoring , *LABOR time , *SPIDERS , *INVENTORIES , *BATS - Abstract
Comparable data is essential to understand biodiversity patterns. While assemblage or community inventorying requires comprehensive sampling, monitoring focuses on as few components as possible to detect changes. Quantifying species, their evolutionary history, and the way they interact requires studying changes in taxonomic (TD), phylogenetic (PD) and functional diversity (FD). Here we propose a method for the optimization of sampling protocols for inventorying and monitoring assemblages or communities across these three diversity dimensions taking sampling costs into account. We used Iberian spiders and Amazonian bats as two case-studies. The optimal combination of methods for inventorying and monitoring required optimizing the accumulation curve of α-diversity and minimizing the difference between sampled and estimated β-diversity (bias), respectively. For Iberian spiders, the optimal combination for TD, PD and FD allowed sampling at least 50% of estimated diversity with 24 person-hours of fieldwork. The optimal combination of six person-hours allowed reaching a bias below 8% for all dimensions. For Amazonian bats, surveying all the 12 sites with mist-nets and 0 or 1 acoustic recorders was the optimal combination for almost all diversity types, resulting in >89% of the diversity and <10% bias with roughly a third of the cost. Only for phylogenetic α-diversity, the best solution was less clear and involved surveying both with mist nets and acoustic recorders. The widespread use of optimized and standardized sampling protocols and regular repetition in time will radically improve global inventory and monitoring of biodiversity. We strongly advocate for the global adoption of sampling protocols for both inventory and monitoring of taxonomic, phylogenetic and functional diversity. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
14. Application of the Spider Silk Standardization Initiative (S3I) methodology to the characterization of major ampullate gland silk fibers spun by spiders from Pantanos de Villa wetlands (Lima, Peru)
- Author
-
Garrote, Javier, Ruiz, Víctor, Troncoso, Omar P., Torres, Fernando G., Arnedo, Miquel, Elices, Manuel, Guinea, Gustavo V., and Pérez-Rigueiro, José
- Published
- 2020
- Full Text
- View/download PDF
15. Integrating museum collections and molecules reveals genus-level synonymy and new species in red devil spiders (Araneae, Dysderidae) from the Middle East and Central Asia
- Author
-
Bellvert, Adrià, primary, Dimitrov, Dragomir, additional, Zamani, Alireza, additional, and Arnedo, Miquel A., additional
- Published
- 2024
- Full Text
- View/download PDF
16. From biomarkers to community composition: Negative effects of UV/chlorine-treated reclaimed urban wastewater on freshwater biota
- Author
-
Múrria, Cesc, primary, Maceda-Veiga, Alberto, additional, Barata, Carlos, additional, Gomà, Joan, additional, Faria, Melissa, additional, Antich, Adrià, additional, Arnedo, Miquel A., additional, Bonada, Núria, additional, and Prat, Narcís, additional
- Published
- 2023
- Full Text
- View/download PDF
17. How Iberian are we? Mediterranean climate determines structure and endemicity of spider communities in Iberian oak forests
- Author
-
Malumbres-Olarte, Jagoba, Crespo, Luís Carlos, Domènech, Marc, Cardoso, Pedro, Moya-Laraño, Jordi, Ribera, Carles, and Arnedo, Miquel A.
- Published
- 2020
- Full Text
- View/download PDF
18. The Grass was Greener : Repeated Evolution of Specialized Morphologies and Habitat Shifts in Ghost Spiders Following Grassland Expansion in South America
- Author
-
Ceccarelli, F. Sara, Koch, Nicolás Mongiardino, Soto, Eduardo M., Barone, Mariana L., Arnedo, Miquel A., and Ramírez, Martín J.
- Published
- 2019
19. New records and phylogenetic placement of the enigmatic spider Cybaeodes mallorcensis Wunderlich, 2008 (Araneae: Liocranidae).
- Author
-
Domènech, Marc, Crespo, Luís C., Ribera, Carles, and Arnedo, Miquel A.
- Abstract
The spider genus Cybaeodes Simon, 1878 is found in the Western Mediterranean region. It belongs to the family Liocranidae, but its exact phylogenetic position has been debated due to its unique morphological features. Here we present the first records of the species Cybaeodes mallorcensis Wunderlich, 2008 outside of the Balearic Islands, specifically in the Iberian Peninsula, and speculate on the possible causes of this disjunct distribution. Additionally, we publish the first genetic data for the genus Cybaeodes and use them to interrogate about the phylogenetic position of this remarkable genus within the spider tree of life. The moderate genetic differentiation found among some of the individuals sampled in the Iberian Peninsula suggests that these may be native populations, and not the result of introductions from the Balearic Islands. However, sequencing specimens from the islands would help shed some light on their origin. Finally, the phylogenetic tree containing the new genetic data of Cybaeodes renders Liocranidae paraphyletic, the genus Cybaeodes being more closely related to the family Cithaeronidae and two liocranid genera, albeit with low supports. Our results highlight the need for a more comprehensive phylogeny to determine the placement of this obscure genus. [ABSTRACT FROM AUTHOR]
- Published
- 2024
20. The arachnofauna of the Valencian coastal dunes (eastern Iberian Peninsula): checklist and new records for Spain and Europe.
- Author
-
Calatayud-Mascarell, Arnau, Domènech, Marc, Selfa, Jesús, and Arnedo, Miquel A.
- Abstract
We present here the results of the first semi-quantitative survey of arachnids conducted on coastal dunes of Spain. We used the optimized COBRA protocol to sample two localities along the Valencian coast. We collected 2886 specimens (58.2% juveniles), belonging to 78 species, 70 genera, 31 families, and 4 orders. The species Larinia chloris (Audouin, 1826) and the genus Cebrennus Simon, 1880 are reported in Europe for the first time. We further confirm the presence in Spain of the spiders Lathys narbonensis (Simon, 1876) and Ariadna inops Wunderlich, 2011. We present images of the diagnostic traits of the most interesting finds along with a checklist of the Arachnida present in the Valencian coastal dunes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
21. Impact of climate change on spider species distribution along the La Plata River basin, southern South America : projecting future range shifts for the genus Stenoterommata (Araneae, Mygalomorphae, Nemesiidae)
- Author
-
Ferretti, Nelson E., Arnedo, Miquel, and González, Alda
- Published
- 2018
22. Bringing spiders to the multilocus era: novel anonymous nuclear markers for Harpactocrates ground-dwelling spiders (Araneae: Dysderidae) with application to related genera
- Author
-
Bidegaray-Batista, Leticia, Gillespie, Rosemary G, Arnedo, Miquel A, and BioStor
- Published
- 2011
23. S
- Author
-
Medeiros, A. C., primary, Natland, James H., additional, Harris, D. James, additional, Conant, Sheila, additional, Rauzon, Mark J., additional, Berger, W. H., additional, Clark, Malcolm, additional, Wessel, Paul, additional, LaPoint, Richard T., additional, Kaneshiro, Kenneth Y., additional, Gerlach, Justin, additional, Hayward, James, additional, Baldwin, Bruce G., additional, Knowles, L. Lacey, additional, Huang, Huateng, additional, McCormack, John E., additional, Rodda, Gordon H., additional, Van Damme, Kay, additional, Steele, Orlo C., additional, Davies, Hugh L., additional, Schoener, Thomas W., additional, Spiller, David A., additional, Arnedo, Miquel A., additional, Włodarska-Kowalczuk, Maria, additional, Manamendra-Arachchi, Kelum, additional, Groves, Colin, additional, Ashmole, Myrtle, additional, Ashmole, Philip, additional, Bell, Michael A., additional, Bossuyt, Beatrijs, additional, Lippmann, Thomas C., additional, Symonds, Graham, additional, Fridriksson, Sturla, additional, and Thaman, R. R., additional
- Published
- 2019
- Full Text
- View/download PDF
24. Dispersal Strategies, Genetic Diversity, and Distribution of Two Wolf Spiders (Araneae, Lycosidae): Potential Bio-Indicators of Ecosystem Health of Coastal Dune Habitats of South America
- Author
-
Bidegaray-Batista, Leticia, Arnedo, Miquel, Carlozzi, Ana, Jorge, Carolina, Pliscoff, Patricio, Postiglioni, Rodrigo, Simó, Miguel, Aisenberg, Anita, Viera, Carmen, editor, and Gonzaga, Marcelo O., editor
- Published
- 2017
- Full Text
- View/download PDF
25. Rafting spiders or drifting islands? Origins and diversification of the endemic trap-door spiders from the Balearic Islands, Western Mediterranean
- Author
-
Mora, Elisa, Paspati, Angeliki, Decae, Arthur E., and Arnedo, Miquel A.
- Published
- 2017
26. Breaking the cliché: sex reversal in size dimorphism and mobility in South American Allocosinae (Lycosidae) spiders
- Author
-
Aisenberg, Anita, primary, Bollatti, Fedra, additional, Oviedo-Diego, Mariela, additional, Albín, Andrea, additional, Alves Días, Marcelo, additional, Arnedo, Miquel A, additional, Brescovit, Antonio D, additional, Casacuberta, Marcelo, additional, Cavassa, Diego, additional, Gonnet, Verónica, additional, Izquierdo, Matías, additional, Laborda, Álvaro, additional, Piacentini, Luis N, additional, Pliscoff, Patricio, additional, Postiglioni, Rodrigo, additional, Simó, Miguel, additional, Texeira, Renato A, additional, and Bidegaray-Batista, Leticia, additional
- Published
- 2023
- Full Text
- View/download PDF
27. The non-dereliction in evolution: Trophic specialisation drives convergence in the radiation of red devil spiders (Araneae: Dysderidae) in the Canary Islands
- Author
-
Bellvert, Adrià, primary, Adrián-Serrano, Silvia, additional, Macías-Hernández, Nuria, additional, Toft, Søren, additional, Kaliontzopoulou, Antigoni, additional, and Arnedo, Miquel A, additional
- Published
- 2023
- Full Text
- View/download PDF
28. Speciation on a Conveyor Belt: Sequential Colonization of the Hawaiian Islands by Orsonwelles Spiders (Araneae, Linyphiidae)
- Author
-
Hormiga, Gustavo, Arnedo, Miquel, and Gillespie, Rosemary G.
- Published
- 2003
29. SYSTEMATICS OF THE GENUS DYSDERA (ARANEAE, DYSDERIDAE) IN THE EASTERN CANARY ISLANDS
- Author
-
Arnedo, Miquel A, Oromi, Pedro, Ribera, Carles, and BioStor
- Published
- 2000
30. Radiation of the Genus Dysdera (Araneae, Dysderidae) in the Canary Islands: The Island of Tenerife
- Author
-
Arnedo, Miquel A, Ribera, Carles, and BioStor
- Published
- 1999
31. Genitalic morphology and phylogenomic placement of the Australian spider Paraplectanoides crassipes Keyserling, 1886 (Araneae, Araneidae) with a discussion on the classification of the family Araneidae.
- Author
-
Hormiga, Gustavo, Kulkarni, Siddharth, Arnedo, Miquel, Dimitrov, Dimitar, Giribet, Gonzalo, Kallal, Robert J., and Scharff, Nikolaj
- Subjects
ORB weavers ,SPIDERS ,STEPFAMILIES ,CLASSIFICATION ,FAMILIES ,MORPHOLOGY ,BAYESIAN analysis - Abstract
We complement and expand the existing descriptions of the Australian araneid spider Paraplectanoides crassipes Keyserling, 1886, and provide the first detailed analysis of the male palpal homologies to include examination of the expanded organ and scanning electron micrographs of the palpal sclerites. We study the placement of Paraplectanoides and the classification of the family Araneidae by combining ultraconserved elements with Sanger markers. We also added Sanger sequences of the Australian araneid genus Venomius to the molecular dataset of Scharff et al. (2020) to explore the phylogenetic placement and implications for classification of the family. We evaluate a recent proposal on the classification of the family Araneidae by Kuntner et al. (2023) in which a new family is erected for P. crassipes. Paraplectanoides is monotypic. Examination of the type material shows that Paraplectanoides kochi O. Pickard-Cambridge, 1877 is misplaced in the genus and the name is a senior synonym of the araneid Isoxya penizoides Simon, 1887 (new synonymy) that results in the new combination Isoxya kochi (O. Pickard- Cambridge, 1877). The classification of Araneidae is revised and the following nomenclatural acts are introduced: Paraplectanoididae Kuntner, Coddington, Agnarsson and Bond, 2023 is a junior synonym of Araneidae Clerck, 1757 new synonymy; phonognathines and nephilines are subfamilies of Araneidae (Subfamily Phonognathinae Simon, 1894 rank resurrected; and Subfamily Nephilinae Simon, 1894 rank resurrected). The results of our analyses corroborate the sister group relationship between Paraplectanoides and the araneid subfamily Nephilinae. Venomius is sister to the Nephilinae + Paraplectanoides clade. The placement of the oarcine araneids and Venomius renders the family Araneidae non-monophyletic if this were to be circumscribed as in Kuntner et al. (2023). In light of the paucity of data that the latter study presents, and in absence of a robust, stable and more densely sampled phylogenetic analysis of Araneidae, the changes and definitions introduced by that classification are premature and could lead to a large number of new families for what once were araneid species if the maximum-crown-clade family definitions were to be used. Consequently, we argue for restoring the familial and subfamilial classification of Araneidae of Dimitrov et al. (2017), Scharff et al. (2020) and Kallal et al. (2020). [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
32. Systematics of the Genus Dysdera (Araneae, Dysderidae) in the Eastern Canary Islands
- Author
-
Arnedo, Miquel A., Oromí, Pedro, and Ribera, Carles
- Published
- 2000
33. Radiation of the Genus Dysdera (Araneae, Dysderidae) in the Canary Islands: The Island of Tenerife
- Author
-
Arnedo, Miquel A. and Ribera, Carles
- Published
- 1999
34. A relict subterranean spider (Araneae: Linyphiidae: Troglohyphantes) reveals a unique component of the biogeography of Corsica
- Author
-
Isaia, Marco, primary, Mammola, Stefano, additional, and Arnedo, Miquel A, additional
- Published
- 2023
- Full Text
- View/download PDF
35. Trait‐mediated responses to aridity and experimental drought by springtail communities across Europe
- Author
-
Ferrín, Miquel, Márquez, Laura, Petersen, Henning, Salmon, Sandrine, Ponge, Jean‐François, Arnedo, Miquel, Emmett, Bridget, Beier, Claus, Schmidt, Inger K., Tietema, Albert, de Angelis, Paolo, Liberati, Dario, Kovács‐Láng, Edit, Kröel‐Dulay, György, Estiarte, Marc, Bartrons, Mireia, Peñuelas, Josep, Peguero, Guille, Ferrín, Miquel, Márquez, Laura, Petersen, Henning, Salmon, Sandrine, Ponge, Jean‐François, Arnedo, Miquel, Emmett, Bridget, Beier, Claus, Schmidt, Inger K., Tietema, Albert, de Angelis, Paolo, Liberati, Dario, Kovács‐Láng, Edit, Kröel‐Dulay, György, Estiarte, Marc, Bartrons, Mireia, Peñuelas, Josep, and Peguero, Guille
- Abstract
1. The capacity to forecast the effects of climate change on biodiversity largely relies on identifying traits capturing mechanistic relationships with the environment through standardized field experiments distributed across relevant spatial scales. The effects of short-term experimental manipulations on local communities may overlap with regional climate gradients that have been operating during longer time periods. However, to the best of our knowledge, there are no studies simultaneously assessing such long-term macroecological drivers with local climate manipulations. 2. We analysed this issue with springtails (Class Collembola), one of the dominant soil fauna groups, in a standardized climate manipulation experiment conducted across six European countries encompassing broad climate gradients. We combined community data (near 20K specimens classified into 102 species) with 22 eco-morphological traits and reconstructed their phylogenetic relationships to track the evolution of adaptations to live at different soil depths, which is key to cope with desiccation. We then applied joint species distribution models to investigate the combined effect of the regional aridity gradient with the local experimental treatment (drought and warming) over the assembly of springtail communities and tested for significant trait–environment relationships mediating their community-level responses. 3. Our results show (1) a convergent evolution in all three major collembolan lineages of species adapted to inhabit at different soil strata; (2) a clear signature of aridity selecting traits of more epigeic species at a biogeographical scale and (3) the association of short-term experimental drought with traits related to more euedaphic life-forms. 4. The hemiedaphic condition would be the plesiomorphic state for Collembola while the adaptations for an epigeic life would have been secondarily gained. Epigeic springtails are not only more resistant to drought, but also have a higher disp
- Published
- 2023
36. Uncovering the role of the Western Mediterranean tectonics in shaping the diversity and distribution of the trap-door spider genus Ummidia (Araneae, Ctenizidae)
- Author
-
Opatova, Vera, Bond, Jason E., and Arnedo, Miquel A.
- Published
- 2016
37. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders
- Author
-
Pons, Joan, Bover, Pere, Bidegaray-Batista, Leticia, and Arnedo, Miquel A.
- Published
- 2019
- Full Text
- View/download PDF
38. Extant primitively segmented spiders have recently diversified from an ancient lineage
- Author
-
Xu, Xin, Liu, Fengxiang, Cheng, Ren-Chung, Chen, Jian, Xu, Xiang, Zhang, Zhisheng, Ono, Hirotsugu, Pham, Dinh Sac, Norma-Rashid, Y., Arnedo, Miquel A., Kuntner, Matjaž, and Li, Daiqin
- Published
- 2015
39. Ischnocolus elongatus
- Author
-
Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto, and Arnedo, Miquel A
- Subjects
Theraphosidae ,Arthropoda ,Ischnocolus elongatus ,Arachnida ,Animalia ,Araneae ,Biodiversity ,Taxonomy ,Ischnocolus - Abstract
ISCHNOCOLUS ELONGATUS (SIMON, 1873) (FIGS 6 A-L, 7, 8, 9C, D, 10C–F, 13C–F, 21A–N, 22A– G, 23A–F, 24A–H) Cyrtauchenius elongatus Simon, 1873: 32 (description of female). Moggridge (1874: 182, 189, 248, pl. XIII, fig. B; burrow entrance); Savory (1928: 290). Presumably deposited in MNHN, not found by Zonstein (2018), not examined. Topotypes (Ksar el Kebir) were included in this study. Leptopelma africana Ausserer, 1875: 167 (description of female). Synonymized with Cyrtauchenius elongatus Simon, 1873 by Simon (1889: 396). Leptopelma elongata Simon 1889: 395, pl. XIII, fig. 2 (female, burrow entrance), Simon (1909: 9); Reimoser (1919: 7); Berland (1932: 110, fig. 219; burrow entrance). Luphocemus insidiosus Denis, 1960: 186–189 (description of female), illustration of burrow (fig. 2, p.187). Deposition place unknown. Type not examined. Topotypes (Benslimane) were included in this study. New synonymy. Harpactirella insidiosa Benoit, 1965: 297; CalatayudMascarell & Sánchez-Vialas (2020: figs 2–4, adult female and burrow). Ischnocolus hancocki Smith, 1990: 127, figs 803–818 (female); Guadanucci & Wendt (2014: 394, fig. 4A; female); Zonstein (2018: 107, figs1–8; male). Deposited in BMNH, type not examined. Topotypes (Larache) were morphologically examined. New synonymy. Ischnocolus elongatus: Zonstein (2018: 106). Type material: Type locality Ksar el Kebir (Morocco), female holotype presumably in MNHN, not found by Zonstein (2018), not examined. Topotypes were included in this study. Material examined: Morocco: 9♀♀ (CRBAMM000430, CRBAMM000432,CRBAMM000424,CRBAMM000425, CRBAMM000426,CRBAMM000427,CRBAMM000428, CRBAMM000429, CRBAMM000431), province of Fés, Imouzer, 33°38 ′ 39 ″ N, 5°04 ′ 09 ″ W, 12.iv.2010 (V. Opatova, M, Arnedo leg.). 1♀, 2 juv. (CRBAMM000351, CRBAMM000350), province of Taroudant, Cova Maravilles, 30°10 ′ 40 ″ N, 8°17 ′ 38 ″ W, 8.iv.2010 (V. Opatova & M.Arnedo leg.). 3♀♀, 3 juv. (CRBAMM000372, CRBAMM000363,CRBAMM000371,CRBAMM000364, CRBAMM000365, CRBAMM000367), province Al Haouz, Asni, 31°11 ′ 22 ″ N, 8°03 ′ 27 ″ W, 9.iv. 2010 (V. Opatova, M. Arnedo leg.). 1♀ (CRBAMM000534), province of Taounate, Rhafsai, 34°37 ′ 55 ″ N, 4°55 ′ 52 ″ W, 16.iv.2010 (V. Opatova, M. Arnedo leg.). 1♂, 1 juv. (CRBAMM000397, CRBAMM000403), province of Azilal, Tilouguite, 32°05 ′ 04 ″ N, 6°20 ′ 00 ″ W, 10.IV.2010 (V. Opatova & M. Arnedo leg.). 3♀♀, 4 juv. (CRBAMM 000411, CRBAMM 000406, CRBAMM000407,CRBAMM000408,CRBAMM000410, CRBAMM000412, CRBAMM000413), province of Béni- Mellal, Ab el Hamam, 32°31 ′ 19 ″ N, 4°55 ′ 52 ″ W, 11.iv.2010 (V. Opatova & M. Arnedo leg.). 3♀♀ (CRBAMM000468, CRBAMM000467, CRBAMM000470), province of Taza, Sidi Abdulah, 32°31 ′ 20 ″ N, 6°02 ′ 02 ″ W, 13.iv.2010 (V. Opatova & M.Arnedo leg.). 1♀, 1 juv. (CRBAMM000483, CRBAMM000484), province of Oujda, Ain Sfa, 34°49 ′ 28 ″ N, 2°05 ′ 12 ″ W, 14.IV.2010 (V. Opatova & M. Arnedo leg.). 4♀♀, 4 juv. (CRBAMM000501, CRBAMM000502,CRBAMM000503,CRBAMM000504, CRBAMM000506,CRBAMM000507,CRBAMM000508, CRBAMM000509), province of Al Hoceima, Bni Hadifa, 35°00 ′ 19 ″ N, 4°10 ′ 44 ″ W, 15.iv.2010 (V. Opatova & M. Arnedo leg.). 1♀, 2 juv. (CRBA004970, CRBA004971, CRBA004972), province of Taroudant, Imgoune, 30°16 ′ 29 ″ N, 8°16 ′ 26 ″ W, 22.ii.2020 (J. Korba leg.). 2♀♀, 3 juv. (CRBA004973, CRBA004974, CRBA004975, CRBA004976, CRBA004977), province of Tiznit, Tafraout, 29°40 ′ 54 ″ N, 9°01 ′ 54 ″ W, 23.ii.2020 (J. Korba leg.). 2 juv. (CRBA004985, CRBA004986), province of Guelmim, Mesti, 29°11 ′ 52 ″ N, 10°05 ′ 15 ″ W, 25.ii.2020 (J. Korba leg.). 5♀♀, 2 juv. (CRBA004992, CRBA004993, CRBA 004994, CRBA 004995, CRBA 004996, CRBA004997, CRBA004998), province of Essaouira, Ounagha, 31°31 ′ 32 ″ N, 9°37 ′ 38 ″ W, 28.ii.2020 (J. Korba leg.). 2♀♀ (CRBAMM000446, CRBAMM000447), province of Fés, Pantano, 34°03 ′ 33 ″ N, 5°18 ′ 12 ″ W, 12.iv.2010 (V. Opatova, M. Arnedo leg.). 2 juv. (CRBAMM000352, CRBAMM000353), province of Taroudant, Azoura, 30°01 ′ 31 ″ N, 8°35 ′ 24 ″ W, 8.iv.2010 (V. Opatova, M. Arnedo leg.). 4 juv. (CRBAMM000373, C R B A M M 0 0 0 3 7 4, C R B A M M 0 0 0 3 7 5 CRBAMM000376), province of Azilal, near Ouzoud falls, 31°57 ′ 35 ″ N, 6°46 ′ 05 ″ W, 10.IV.2010 (V. Opatova & M. Arnedo leg.). 1♀ (CRBAMM000419), province of Khénifra, Oumer Riba, 32°55 ′ 41 ″ N, 5°30 ′ 34 ″ W, 11.iv. 2010 (V. Opatova, M. Arnedo leg.). 2♀♀ (CRBAMM000448, CRBAMM000449), province of Fés, Djebel Zalach, 34°06 ′ 23 ″ N, 4°58 ′ 10 ″ W, 12.IV.2010 (V. Opatova & M.Arnedo leg.). 3♀♀, 1 juv. (CRBAMM000488, C R B A M M 0 0 0 4 8 9, C R B A M M 0 0 0 4 9 0 CRBAMM000491), province of Berkane, Beni Snassen, 34°48 ′ 12 ″ N, 2°23 ′ 48 ″ W, 14.IV.2010 (V. Opatova & M. Arnedo leg.). 1♀ (CRBA004980), Bou Tazlaft, 29°37 ′ 40 ″ N, 9°52 ′ 52 ″ W, 24.ii.2020 (J. Korba leg.). 1♀ (CRBA004991), province of Essaouira, Ida Ou Guelloul, 30°54 ′ 00 ″ N, 9°43 ′ 04 ″ W, 27.ii.2020 (J. Korba leg.). 2♀♀ (CRBA004978, CRBA004979), province of Tiznit, Tighmi, 29°34 ′ 32 ″ N, 9°23 ′ 51 ″ W, 24.ii.2020 (J. Korba leg.). 1 juv. (CRBAMM000357), province of Taroudant, Tafingoul, 30°44 ′ 32 ″ N, 8°24 ′ 06 ″ W, 9.iv.2010 (V. Opatova & M. Arnedo leg.). 1 juv. (CRBAMM000356), province of Tiznit, Tizegzauine, 29°50 ′ 42 ″ N, 8°56 ′ 14 ″ W, 8.iv.2010 (V. Opatova & M. Arnedo leg.). 1♀ (CRBAMM000415), province of Beni Mellal, Cheikh, 32°37 ′ 23 ″ N, 5°58 ′ 27 ″ W, 11.iv.2010 (V. Opatova & M. Arnedo leg.). 3♀♀ (CRBA005022, CRBA005023, CRBA005024), province of Larache, Ksar el Kebir, 35°02 ′ 03 ″ N, 6°01 ′ 50 ″ W, 26.ii.2010 (A. Calatayud-Mascarell & A. Sánchez-Vialas leg.). 3♀♀ (CRBA005027, CRBA005028, CRBA005029), province of Benslimane, Benslimane, 33°39 ′ 06 ″ N, 7°05 ′ 23 ″ W, 26.ii.2020 (A. Calatayud-Mascarell & A. SánchezVialas leg.). 5♀♀ (CRBA005032, CRBA005033, CRBA005034, CRBA005035, CRBA005036), province of Sidi Bennour, Oualidia, 32°36 ′ 38 ″ N, 9°00 ′ 34 ″ W, 25.ii.2020 (A. Calatayud-Mascarell & A. SánchezVialas leg.). 1♀ (CRBAMM000222), province of Al Haouz, Tahanaoute, 31°21 ′ 15 ″ N, 7°57 ′ 06 ″ W, 9.iii.2007 (M. Arnedo & C. Ribera leg.). 4♀♀ (deposited in Department of Zoology, Charles University), province of Larache, 35°12 ′ 08 ″ N, 6°06 ′ 03’’W, 12.ix.2021 (J. Korba & V. Opatova leg.) Remarks: Originally described as Cyrtauchenius elongatus Simon, 1873, this species has been recently transferred to the genus Ischnocolus by Zonstein (2018) based on Ausserer’s description of Leptopelma africana, which clearly pointed to Theraphosidae (‘… two toothless claws bearing two tufts of hairs in each tarsi’). The three samples from the type locality analysed in our study (JK 82, JK83, JK84, see Fig. 3) were recovered within the elongatus clade, which is clearly defined by its distinct morphology. Similarly, we included individuals from the type locality of H. insidiosa (JK 87, JK88, see Fig. 3), which were shown to belong to the same clade as the remaining species identified as I. elongatus. In the case of I. hancocki, we could not examine the holotype female nor add samples from Larache (type locality) to the molecular analyses. However, we examined the morphology of specimens from the type locality, which fit the redescription by Guadanucci & Wendt (2014) and turned out to be indistinguishable from the rest of the elongatus morphotype samples. Moreover, the type locality Larache is located within the estimated (SDM) range of occurrence, only 30 km north-west from the topotype locality of I. elongatus. The putative synonymy of I. elongatus and I. hancocki was already suggested by Zonstein (2018). Based on these arguments and the detailed examination of topotypes of each taxon, we herein propose I. elongatus as senior synonym of both I. hancocki and Harpactirella insidiosa. Diagnosis: Ischnocolus elongatus differs from all its congeners by the following combination of characters: robust appearance (Fig. 23), apical segment of PLS triangular (Figs 9C, D, 10C–F, 22D), cephalic region and eye tubercle elevated (Figs 11B, 22E), presence of black bristles on cheliceral margin (Fig. 22D) and tarsus IV without pseudosegmentation. Females further differ from other Ischnocolus species, except I. vanandalae, by possessing 0–2 apical lobes on spermathecae (Figs 6A–L, 22F). Males differ from other Ischnocolus species by having reduced spination on ventral tibia I (Figs 8, 21B–D) and having a shorter palpal tibia in comparison to the tarsus and patella (Fig. 21F–H). The lifestyle of I. elongatus is unique among its congeners [see Montemor et al. (2020) for natural history of Middle Eastern species], as it excavates deep tube-like burrows (see Natural history section). Description: Male, (CRBAMM 000397, Tilougguite): Total length 14.12. Colour pattern: Colour in ethanol: legs and carapace light yellow-brown. Carapace with silver hairs (Fig. 21A). Abdomen darker brown with dorsal light striped pattern. Carapace: 5.43 long, 4.72 wide (Fig. 21A); cephalic region raised from lateral view; eye tubercle elevated, 0.68 long, 1.08 wide; fovea slightly procurved (Fig. 21A). Clypeus 0.23 wide. Eyes (Fig. 21E): AME 0.18, PME 0.17, ALE 0.23, PLE 0.20; PME-PME 0.67, ALE-AME 0.26, ALE-PLE 0.34, AMEPLE 0.38, AME-AME 0.35, ALE-ALE 0.81. Sternum, labium and maxillae: sternum 2.60 long, 2.47 wide, setose; labium 0.58 long, 1.02 wide, with approx. 20 cuspules; maxillae with approx. 40 cuspules (Fig. 21I). Abdomen: 6.30 long, 3.23 wide; PLS basal segment 0.84 long, median segment 0.51 long, apical segment 0.52 long, triangular. Chelicerae: 2.27 long; basal article with nine teeth; intercheliceral tumescence present (Fig. 21N). Rastellum sensu Raven (1994) absent, but a group of strong black bristles in front of the fang base is present (Fig. 21N). Pedipalps: spination: femur (p)1ap., ventral furrow on tibia not sigmoid, broad. Length: 7.76 (femur 3.12, patella 1.82, ≤ tibia 2.09, tarsus 1.59). Copulatory bulb: bulb globular, embolus curved with pointed tip (Figs 7, 21F– H, J–M). Legs: scopula on all tarsi divided by a thick Figure 21. Ischnocolus elongatus, male, A –N (CRBAMM 000397). A, prosoma, dorsal view. B, tibia I, prolateral view. C, tibia I, ventral view. D, tibia I, retrolateral view. E, eye tubercle, dorsal view. F, palpal bulbus, prolateral view. G, palpal bulbus, ventral view. H, palpal bulbus, retrolateral view. I, sternum, maxillae, labium and chelicerae, ventral view. J, bulbus, prolateral view. K, bulbus, ventral view. L, bulbus, retrolateral view. M, bulbus, dorsal view. N, chelicerae, prolateral view. Scale bar = 1 mm. band of setae. Scopula on ventral metatarsus I nearly totally occupied, II half occupied, III and IV I> II> III. Leg I: 15.98 (femur 4.76, patella 2.62, tibia 3.39, metatarsus 3.01, tarsus 1.94), leg III: 14.30 (femur 3.54, patella 2.06, tibia 2.27, metatarsus 3.22, tarsus 2.04), leg IV: 19.15 (femur 4.98, patella 2.55, tibia 3.78, metatarsus 4.26, tarsus 2.49). Spines: I femur (p)ap1, (r)ap1, patella (r)1, tibia (r)1-1, (v)2- 2-2, metatarsus (v)1-1; III femur (p)ap1, patella (p)1, tibia (r)1-1, (p)2-2, (v)1-1-2, metatarsus (r)0-1-1, (p)2- 2-2, (v)1-1-1-1; IV femur (r)ap1, (d)ap1, patella (p)1, Figure 22. Ischnocolus elongatus, female, A –G (CRBA 005027). Prosoma, dorsal view. B, sternum, maxillae and chelicerae, ventral view. C, eye tubercle, dorsal view. D, chelicerae, prolateral view (arrow indicates dense strong black bristles). E, whole body, lateral view. F, spermathecae. G, posterior lateral spinneret, retrolateral view. Scale bar = 1 mm. tibia (r)1-1-1-1-1-1, (p)2-1-1-1, (v)1-1-2, metatarsus (r)1-1, (p)1-2-1-1-2, (v)1-1. Tarsus IV without pseudosegmentation. Female (CRBA 005027, Benslimane): Total length 25.07. Colour pattern: Colour in ethanol: carapace, chelicerae and legs dark orange-brown, abdomen grey-brown with light striped pattern. Colour of live specimens: northern populations have beige-golden setae on carapace, legs and chelicerae. Basal part of the chelicerae is black without setae, black stripe on the patella of each leg. Abdomen beige-golden with black spots (Fig. 23C). Southern populations have orange legs with black setae, carapace golden brown, chelicerae black with golden brown setae. Abdomen light to dark-brown with golden spot pattern (Fig. 23A, B). Carapace: 7.74 long, 6.39 wide (Fig. 22A); cephalic region raised from lateral view; eye tubercle strongly elevated (Fig. 22E), 0.99 long, 1.40 wide; fovea deep, straight to slightly procurved (Fig. 22A); clypeus 0.29. Eyes (Fig. 22C): AME 0.20, PME 0.21, ALE 0.26, PLE 0.23; PME-PME 0.89, ALE-AME 0.31, ALE-PLE 0.43, AME-PLE 0.54, AME-AME 0.47, ALE-ALE 1.01. Sternum, labium and maxillae: sternum 3.87 long, 3.44 wide; labium 1.14 long, 1.63 wide, with approx. 20 cuspules; maxillae with approx. 70 cuspules (Fig. 22B). Abdomen: oval, 12.87 long, 6.77 wide (Fig. 22E); PLS basal segment 1.30 long, median segment 0.63 long, apical segment 0.84 long, triangular (Fig. 22G). Vulva: formed by two widely separated triangular receptacles without lobes (Fig. 22F). Chelicerae: robust, 4.20 mm long; basal article with nine teeth; rastellum sensu Raven (1994) absent, but a group of strong black bristles is present on the margin (Fig. 22D). Pedipalps: length: 11.61 (femur 4.26, patella 2.66, tibia 2.52, tarsus 2.17). Spination: femur (p)ap1, tibia, (v)1-1-2, (p)1-2-1. Legs: scopula on all tarsi divided by a thick band of setae.Scopula on ventral metatarsus Ientirely occupied, II four-fifths occupied, III three-quarters occupied, IV three-quarters occupied. Leg measurement: length of legs IV> I> II> III. leg IV: 21.1 (femur 6.05, patella 3.36, tibia 4.58, metatarsus 4.45, tarsus 2.66), leg III: 14.52 (femur 4.59, patella 2.61, tibia 2.60, metatarsus 2.72, tarsus 2.00), leg II: 17.19 (femur 5.21, patella 3.07, tibia 3.59, metatarsus 3.08, tarsus 2.24), leg I: 19.44 (femur 5.99, patella 3.65, tibia 4.13, metatarsus 3.34, tarsus 2.33). Spines: I femur (p)ap1, tibia (v)1-1, tarsus (v)1-0; II femur (p)ap1, tibia (r)0-0-1, (v)1-1-2, tarsus (v)1-1; III femur (r)ap1, (p)ap1, patella (r)1, (p)2, tibia (r)1-1, (p)2-2, (v)1-1-2, metatarsus (r)1, (p)2-2-2, (v)1-1-2; IV femur (r)ap1, patella (r)ap1, tibia (r)1-1- 1, (v)2-1-2-1-2 metatarsus (r)1-2-1, (p)1-1, (v)2-2-2-3. Tarsus IV without pseudosegmentation. Distribution: The species is currently known only from Morocco, where it ranges from Larache in the north to Mesti in the south. Distribution in Algeria is highly probable. Natural history: Ischnocolus elongatus constructs a 20–30 cm deep tube burrow with an open entrance and a palisade build from surrounding material resembling that of wolf spider genus Lycosa, but with more dense and compact silk lining (Fig. 24E– H). Burrows in southern populations (~20 observed) consist of a single, slightly inclined underground tube, sometimes connected to the surface by side exits. Burrows in northern populations seemed to be more complex (~ten burrows observed). A tube vertically extending from the entrance ends after approximately 5–10 cm, forming a chamber where the spider deposits prey remnants and old exuviae. The main burrow connects laterally to the vertical tube few cm below the entrance. The opening to the lateral tube is small and often closed by a dense web. After a short distance, the horizontally oriented side tube turns vertical and continues approx. for another 20 cm. The species occurs in a wide variety of habitats and climates, also in sympatry with either I. valentinus or I. mogadorensis. It has been found in humid localities in northern Morocco, in Aleppo pine (Pinus halepensis) or cork-oak (Quercus suber L.) forest with Mediterranean fan palm (Chamaerops humilis) (Fig. 24C), in the central coast on light sandy soil with Berber thuja (Tetraclinis articulata) (Fig. 24B) and in semi-arid localities in southern Morocco among argan stands [Argania spinosa (L.) Skeels] (Fig. 24D) or in Macaronesian vegetation with Euphorbia balsamifera Aiton and E. officinarum L. on hard sandstone bedrock (24A). In Atlas and Anti-Atlas Mountains, the localities do not exceed 2000 m a. s. l., Published as part of Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto & Arnedo, Miquel A, 2022, Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae), pp. 845-884 in Zoological Journal of the Linnean Society 196 (2) on pages 870-874, DOI: 10.1093/zoolinnean/zlac042, http://zenodo.org/record/7184518, {"references":["Simon E. 1873. Araneides nouveaux ou peu connus du midi de l'Europe. (2 e memoire). Memoires de la Societe Royale des Sciences de Liege 5: 187 - 351.","Moggridge JT. 1874. Supplement to harvesting ants and trapdoor spiders. London: Reeve & Co.","Savory TH. 1928. The biology of spiders. London: Sidgwick & Jackson Ltd, 376.","Zonstein SL. 2018. Complementary data on the genus Ischnocolus (Araneae: Theraphosidae). Israel Journal of Entomology 48: 105 - 118.","Ausserer A. 1875. Zweiter Beitrag zur Kenntniss der Arachniden-Familie der Territelariae Thorell (Mygalidae Autor.). Verhandlungen der Kaiserlich-Koniglichen Zoologisch-Botanischen Gesellschaft in Wien 25: 125 - 206.","Simon E. 1889. Etude sur les especes de la famille des Aviculariidae qui habitent le nord de l'Afrique. Actes de la Societe Linneenne de Bordeaux 42: 379 - 397.","Simon E. 1909. Etude sur les arachnides recueillis au Maroc par M. Martinez de la Escalera en 1907. Memorias de la Real Sociedad Espanola de Historia Natural 1: 5 - 43.","Reimoser E. 1919. Katalog der echten Spinnen (Araneae) des Palaarktischen Gebietes. Abhandlungen der ZoologischBotanischen Gesellschaft in Wien 10: 1 - 280.","Berland L. 1932. Les Arachnides (Scorpions, Araignees, etc. Encyclopedie Entomologique 16: 1 - 485.","Denis J. 1960. Notes d'araneologie marocaine. VIII. Un barychelide nouveau du Maroc. Bulletin de la Societe des Sciences Naturelles du Maroc 39: 185 - 189.","Benoit PLG. 1965. Etudes sur les Barychelidae du Centre Africain (Araneae - Orthognatha) II. - Leptopelmatinae nouveaux. Revue de Zoologie et de Botanique Africaines 71: 297 - 303.","Smith AM. 1990. Baboon spiders: tarantulas of Africa and the Middle East. London: Fitzgerald Publishing, 1 - 142.","Guadanucci JPL, Wendt I. 2014. Revision of the spider genus Ischnocolus Ausserer, 1871 (Mygalomorphae: Theraphosidae: Ischnocolinae). Journal of Natural History 48: 387 - 402.","Montemor VM, West RC, Zamani A, Moradmand M, von Wirth V, Wendt I, Huber S, Guadanucci JPL. 2020. Taxonomy of the genus Ischnocolus in the Middle East, with description of a new species from Oman and Iran (Araneae: Theraphosidae). Zoology in the Middle East 66: 76 - 90.","Raven RJ. 1994. Mygalomorph spiders of the Barychelidae in Australia and the western Pacific. Memoirs of the Queensland Museum 35: 291 - 706."]}
- Published
- 2022
- Full Text
- View/download PDF
40. Ischnocolus jickelii L. Koch 1875
- Author
-
Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto, and Arnedo, Miquel A
- Subjects
Theraphosidae ,Arthropoda ,Arachnida ,Ischnocolus jickelii ,Animalia ,Araneae ,Biodiversity ,Taxonomy ,Ischnocolus - Abstract
ISCHNOCOLUS JICKELII L. KOCH, 1875 Ischnocolus jickelii L. Koch, 1875: 58, pl. 6, fig. 2 (♀). Guadanucci & Wendt [2014: 395, fig. 4B (♀)]. Zonstein [2018: 110, fig. 914: 3 (♂)]. Chaetopelma adenense Simon [1890: 83 (♀)]. Synonymized with I. jickelii by Guadanucci & Gallon (2008: 42). Type material: Holotype, female Eritrea: Hamasien (BMNH 19-9-18-5698-99), Guadanucci & Wendt (2014), not examined. Material examined: Somaliland: 2♂♂ 5♀♀, Daallo forest park; 10°45 ′ 38 ″ N, 47°18 ′ 13 ″ E; 4.ix.17 (P. Just, D. Král, P. Frýdlová, D. Frynta, F. Kova ř ík, T. Mazuch & M. Häckel leg.). Diagnosis description and distribution: See Montemor et al. (2020)., Published as part of Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto & Arnedo, Miquel A, 2022, Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae), pp. 845-884 in Zoological Journal of the Linnean Society 196 (2) on page 860, DOI: 10.1093/zoolinnean/zlac042, http://zenodo.org/record/7184518, {"references":["Koch L. 1875. Aegyptische und abyssinische Arachniden gesammelt von Herrn C. Jickeli. Nurnberg: Bauer & Raspe.","Guadanucci JPL, Wendt I. 2014. Revision of the spider genus Ischnocolus Ausserer, 1871 (Mygalomorphae: Theraphosidae: Ischnocolinae). Journal of Natural History 48: 387 - 402.","Zonstein SL. 2018. Complementary data on the genus Ischnocolus (Araneae: Theraphosidae). Israel Journal of Entomology 48: 105 - 118.","Montemor VM, West RC, Zamani A, Moradmand M, von Wirth V, Wendt I, Huber S, Guadanucci JPL. 2020. Taxonomy of the genus Ischnocolus in the Middle East, with description of a new species from Oman and Iran (Araneae: Theraphosidae). Zoology in the Middle East 66: 76 - 90."]}
- Published
- 2022
- Full Text
- View/download PDF
41. Ischnocolus valentinus
- Author
-
Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto, and Arnedo, Miquel A
- Subjects
Theraphosidae ,Ischnocolus valentinus ,Arthropoda ,Arachnida ,Animalia ,Araneae ,Biodiversity ,Taxonomy ,Ischnocolus - Abstract
ISCHNOCOLUS VALENTINUS (DUFOUR, 1820) (FIGS 5A–B, 7, 8, 9A, 10A, 13A, 18A–N, 19A–G, 20A–F) Mygale valentina Dufour (1820: 101; description of male). Mygale valenciana: Walckenaer (1837: 228). Trechona valentina: Thorell (1870: 168). Ischnocolus holosericus L.Koch, in Ausserer (1871: 186; description of juvenile); Simon (1892: 136, fig. 119); Bacelar (1932: 171); Smith (1990: 129, figs 819–829; description of female). Ischnocolus triangulifer Ausserer (1871: 186; description of juvenile); Bacelar (1932: 171). Avicularia andalusiaca Simon (1873: 197, pl. 1, fig. 2; description of male and female); Bacelar (1932: 171, figs. 3–5). Ischnocolus algericus Thorell (1875: 123, description of male). Simon (1903: 925, figs. 1070–1071, m). Ischnocolus fuscostriatus Simon (1885: 41; description of male). Leptopelma cavicola Simon (1889: 396; description of male and female, burrow structure; 1909: 8); Reimoser (1919: 7); Roewer (1942: 222); Bonnet (1957: 2395); Benoit (1964: 414, figs 1, 2; male and female). Ischnocolus maroccanus Simon (1873: 199; description of male and female). Ischnocolus numidus Simon (1909: 9; description of male). Ischnocolus tripolitanus Caporiacco (1937: 57; description of female). Ischnocolus valentinus: Ausserer (1871: 186); Guadanucci & Wendt (2014: 391; description of male and female); Zonstein (2018: 114; description of male) (synonymy of Nemesia cavicola); Montemor et al. (2020: 89, fig. 9C, D); Tamajón Gómez et al. (2020: 165). Type material: Type locality Moixent, Valencian Community, Spain. Female neotype deposited at BMNH, examined. Material examined: Spain: 1♂, 1♀ (CRBAMM000941, CRBAMM000930), province of Cádiz, El Bosque, 36°26 ′ 50 ″ N, 5°22 ′ 19 ″ W, 27.iii.2010 (M. A. Ferrández leg.). 3♀♀ (CRBAMM000965, CRBAMM000966, CRBAMM000967), province of Cádiz, Grazalema, 36°27 ′ 28 ″ N, 5°17 ′ 34 ″ W, 28.iii.2010 (M. A. Ferrández leg.). 1♀ (CRBAMM000948), province of Sevilla, Castaño, 36°33 ′ 58 ″ N, 5°15 ′ 14 ″ W, 27.iii.2010 (M. A. Ferrández leg.). 1♂, 1♀ (CRBAMM 0 0 0 9 8 0, CRBAMM000986), province of Sevila, Coripe, 36°35 ′ 20 ″ N, 5°17 ′ 34 ″ W, 27.iii.2010 (M. A. Ferrández leg.). 1♀ (CRBAMM000141), province of Almería, La Rambla del Aljibe, 37°16 ′ 20 ″ N, 2°02 ′ 24 ″ W, 21.XI.2009 (E. Planas & V. Opatova leg.). 1 juv. (CRBAME000858), province of Málaga, Torcal de Antequera, 36°57 ′ 43 ″ N, 4°31 ′ 06 ″ W, 12.VI.2011 (E. Mora, V. Opatova & P. Sousa leg.). Morocco: 2♀♀, 5 juv. (CRBAMM000386, C R B A M M 0 0 0 3 8 7, C R B A M M 0 0 0 3 8 8 C R B A M M 0 0 0 3 8 9, C R B A M M 0 0 0 3 9 0 CRBAMM000391, CRBAMM000392), province of Azilal, near Ouzoud falls, 31°57 ′ 35 ″ N, 6°46 ′ 05 ″ W, 10.IV.2010 (V. Opatova & M. Arnedo leg.). 2♀♀, 1♂, 3 juv. (CRBAMM000393, CRBAMM000395, C R B A M M 0 0 0 3 9 6, C R B A M M 0 0 0 3 9 8 CRBAMM000399, CRBAMM 000400), province of Azilal, Tilouguite, 32°05 ′ 04 ″ N, 6 °20 ′ 00 ″ W, 10.IV.2010 (V. Opatova & M. Arnedo leg.). 1 juv. (CRBAMM000450), province of Fés, Djebel Zalach, 34°06 ′ 23 ″ N, 4°58 ′ 10 ″ W, 12.IV.2010 (V. Opatova & M.Arnedo leg.). 1 juv. (CRBAMM000485), province of Oujda, Ain Sfa, 34°49 ′ 28 ″ N, 2°05 ′ 12 ″ W, 14.IV.2010 (V. Opatova & M. Arnedo leg.). 3 juv. (CRBAMM000564, CRBAMM000565, CRBAMM000566), province of Tetuán, Beni Yder Cherki, 35°23 ′ 08 ″ N, 5°31 ′ 20 ″ W, 17.IV.2010 (V. Opatova, M. Arnedo leg.). 2 juv. (CRBAMM000493, CRBAMM000583), province of Berkane, Beni Snassen, 34°48 ′ 12 ″ N, 2°23 ′ 48 ″ W, 1 4.IV.2 0 1 0 (V. Opatova & M. Arnedo leg.). 1♀ (CRBAMM 000366), province of Al Haouz, Asni, 31°11 ′ 22 ″ N, 8°03 ′ 27 ″ W, 9.IV.2010 (V. Opatova & M. Arnedo leg.). 1♂ (SMNS-Aran-1376), province of Murcia, Mula, 38°03 ′ 41 ″ N, 1°31 ′ 05 ″ W, 2005. 1♂ (CRBA) province of Berkane, Taforalt, Grotte des Pigeons, 34°48 ′ 52 ″ N, 2°24 ′ 10 ″ W, 15.iv.2002 (M. Arnedo & C. Hernando leg.). Diagnosis: Males can be distinguished from their congeners, except I. jickeli, by bearing only one spine apically along with dense concentration of spines on pro-ventral tibia I (Figs 8, 18B–D). They further differ from all other Ischnocolus species by having straight embolus with narrowing tip (Figs 7, 18J–M). Females differ from their congeners by having spermathecae as wide as long with several (> four) apical lobes (Figs 5A, B, 19F). Description: A detailed redescription is provided by Guadanucci & Wendt (2014) with male and female reproductive organ drawings and male spine pattern on tibia I. Additional photos and drawings of male bulbus are shown by Zonstein (2018), Tamajón Gómez et al. (2020) and Decae (in: Nentwig et al., 2020). Distribution: Following our circumscription of I. valentinus to the ‘north’ lineage, the distribution of the species is more restricted than previously thought, as it only includes the Iberian Peninsula and northern Morocco (Fig. 13A). The northernmost current localities are near Benidorm, in Alacant, Spain and the southernmost ones are located on the northern slopes of the High Atlas Mountains in Morocco. Previous studies have suggested the species occurrence extending as far east as Sicily, Tunisia and Libya (Guadanucci & Wendt, 2014). Although the only Sicilian sample included in our phylogeny was recovered within the ‘north’ lineage (i.e. I. valentinus), detailed morphological and molecular analyses of a more thorough specimen sampling in Algeria, Tunisia and Sicily will be required to confirm the status of the easternmost populations. Natural history: Similar to I. mogadorensis, I. valentinus is an opportunistic species inhabiting natural cavities under and between rocks and tree roots. It usually covers the entrance with a dense, sheet web, sometimes resembling that of a funnelweb spider Macrothele calpeiana Walckenaer, 1805 or some Agelenidae. The burrow entrance can also sometimes resemble that made by I. elongatus, but the web of I. valentinus is less dense and more sheetlike (Fig. 20E, F). The burrow of I. valentinus never forms a proper tube, but continues as an irregular hole connecting one or several natural underground cavities. Habitat preferences range from Mediterranean open grasslands to dense Aleppo pine (Pinus halepensis Mill.) or Barbary thuja (Tetraclinis articulata) forests., Published as part of Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto & Arnedo, Miquel A, 2022, Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae), pp. 845-884 in Zoological Journal of the Linnean Society 196 (2) on pages 866-870, DOI: 10.1093/zoolinnean/zlac042, http://zenodo.org/record/7184518, {"references":["Dufour L. 1820. Observations sur quelques arachnides quadripulmonaires. Annales Generales des Sciences Physiques 5: 96 - 116.","Ausserer A. 1871. Beitrage zur Kenntniss der ArachnidenFamilie der Territelariae Thorell (Mygalidae Autor). Verhandlungen der Kaiserlich-Koniglichen ZoologischBotanischen Gesellschaft in Wien 21: 117 - 224.","Simon E. 1892. Histoire naturelle des araignees. Deuxieme edition, tome premier. Paris: Roret, 1 - 256.","Smith AM. 1990. Baboon spiders: tarantulas of Africa and the Middle East. London: Fitzgerald Publishing, 1 - 142.","Simon E. 1873. Araneides nouveaux ou peu connus du midi de l'Europe. (2 e memoire). Memoires de la Societe Royale des Sciences de Liege 5: 187 - 351.","Simon E. 1903. Histoire naturelle des araignees. Deuxieme edition, tome second. Paris: Roret, 669 - 1080.","Simon E. 1885. Etudes sur les Arachnides recueillis en Tunisie en 1883 et 1884 par MM. A. Letourneux, M. Sedillot et Valery Mayet, membres de la mission de l'Exploration scientifique de la Tunisie. In: Exploration scientifique de la Tunisie, publiee sous les auspices du Ministere de l'instruction publique. Zoologie - Arachnides. Paris, 55.","Simon E. 1889. Etude sur les especes de la famille des Aviculariidae qui habitent le nord de l'Afrique. Actes de la Societe Linneenne de Bordeaux 42: 379 - 397.","Reimoser E. 1919. Katalog der echten Spinnen (Araneae) des Palaarktischen Gebietes. Abhandlungen der ZoologischBotanischen Gesellschaft in Wien 10: 1 - 280.","Roewer CF. 1942. Katalog der Araneae von 1758 bis 1940. 1. Band (Mesothelae, Orthognatha, Labidognatha: Dysderaeformia, Scytodiformia, Pholciformia, Zodariiformia, Hersiliaeformia, Argyopiformia). Natura, Bremen 1: 1 - 1040.","Simon E. 1909. Etude sur les arachnides recueillis au Maroc par M. Martinez de la Escalera en 1907. Memorias de la Real Sociedad Espanola de Historia Natural 1: 5 - 43.","di Caporiacco L. 1937. Un manipolo di araneidi della Tripolitania costiera. Monitore Zoologico Italiano 48: 57 - 60.","Guadanucci JPL, Wendt I. 2014. Revision of the spider genus Ischnocolus Ausserer, 1871 (Mygalomorphae: Theraphosidae: Ischnocolinae). Journal of Natural History 48: 387 - 402.","Zonstein SL. 2018. Complementary data on the genus Ischnocolus (Araneae: Theraphosidae). Israel Journal of Entomology 48: 105 - 118.","Montemor VM, West RC, Zamani A, Moradmand M, von Wirth V, Wendt I, Huber S, Guadanucci JPL. 2020. Taxonomy of the genus Ischnocolus in the Middle East, with description of a new species from Oman and Iran (Araneae: Theraphosidae). Zoology in the Middle East 66: 76 - 90.","Nentwig W, Blick T, Bosmans R, Gloor D, Hanggi A, Kropf C. 2020. Spiders of Europe, v. 12. Available at: https: // www. araneae. nmbe. ch (accessed 20 December 2020) https: // doi. org / 10.24436 / 1.","Walckenaer CA. 1805. Tableau des araneides ou caracteres essentiels des tribus, genres, familles et races que renferme le genre Aranea de Linne, avec la designation des especes comprises dans chacune de ces divisions. Paris: De L´Imprimerie de Dentu, 88."]}
- Published
- 2022
- Full Text
- View/download PDF
42. Ischnocolus Ausserer 1871
- Author
-
Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto, and Arnedo, Miquel A
- Subjects
Theraphosidae ,Arthropoda ,Arachnida ,Animalia ,Araneae ,Biodiversity ,Taxonomy ,Ischnocolus - Abstract
GENUS ISCHNOCOLUS AUSSERER, 1871 Type species: Ischnocolus holosericeus Koch, in Ausserer (1871) by original designation, syn. of Ischnocolus valentinus (Dufour, 1820). Diagnosis: See Guadanucci & Wendt (2014) for a recent diagnosis of the genus. Species included: Ischnocolus elongatus (Simon, 1873); Ischnocolus ignoratus Guadanucci & Wendt, 2014; Ischnocolus jickelii L. Koch, 1875; Ischnocolus mogadorensis Simon, 1909; Ischnocolus rubropilosus Keyserling, 1891 (note: taxonomic allocation of I. rubropilosus in Ischnocolus is dubious because it lies far outside the zoogeographical range of the genus); Ischnocolus tomentosus Thorell, 1899 (probably belongs to Myostola Simon, 1903, according to Guadanucci & Wendt, 2014, who considered it as incertae sedis); Ischnocolus valentinus (Dufour, 1820) (type species). 860 J. KORBA ET AL., Published as part of Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adrián, Silvia, Sánchez-Vialas, Alberto & Arnedo, Miquel A, 2022, Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae), pp. 845-884 in Zoological Journal of the Linnean Society 196 (2) on pages 859-860, DOI: 10.1093/zoolinnean/zlac042, http://zenodo.org/record/7184518, {"references":["Ausserer A. 1871. Beitrage zur Kenntniss der ArachnidenFamilie der Territelariae Thorell (Mygalidae Autor). Verhandlungen der Kaiserlich-Koniglichen ZoologischBotanischen Gesellschaft in Wien 21: 117 - 224.","Dufour L. 1820. Observations sur quelques arachnides quadripulmonaires. Annales Generales des Sciences Physiques 5: 96 - 116.","Guadanucci JPL, Wendt I. 2014. Revision of the spider genus Ischnocolus Ausserer, 1871 (Mygalomorphae: Theraphosidae: Ischnocolinae). Journal of Natural History 48: 387 - 402.","Simon E. 1873. Araneides nouveaux ou peu connus du midi de l'Europe. (2 e memoire). Memoires de la Societe Royale des Sciences de Liege 5: 187 - 351.","Koch L. 1875. Aegyptische und abyssinische Arachniden gesammelt von Herrn C. Jickeli. Nurnberg: Bauer & Raspe.","Simon E. 1909. Etude sur les arachnides recueillis au Maroc par M. Martinez de la Escalera en 1907. Memorias de la Real Sociedad Espanola de Historia Natural 1: 5 - 43.","Simon E. 1903. Histoire naturelle des araignees. Deuxieme edition, tome second. Paris: Roret, 669 - 1080."]}
- Published
- 2022
- Full Text
- View/download PDF
43. Life-history traits drive spatial genetic structuring in Dinaric cave spiders
- Author
-
Pavlek, Martina, primary, Gauthier, Jérémy, additional, Tonzo, Vanina, additional, Bilat, Julia, additional, Arnedo, Miquel A., additional, and Alvarez, Nadir, additional
- Published
- 2022
- Full Text
- View/download PDF
44. The Vitruvian spider: Segmenting and integrating over different body parts to describe ecophenotypic variation
- Author
-
Bellvert, Adrià, primary, Roca‐Cusachs, Marcos, additional, Tonzo, Vanina, additional, Arnedo, Miquel A., additional, and Kaliontzopoulou, Antigoni, additional
- Published
- 2022
- Full Text
- View/download PDF
45. Spatial genetic structure of Dinaric cave-dwelling spiders
- Author
-
Pavlek, Martina, primary, Gauthier, Jérémy, additional, Arnedo, Miquel, additional, Tonzo, Vanina, additional, Bilat, Julia, additional, and Alvarez, Nadir, additional
- Published
- 2022
- Full Text
- View/download PDF
46. Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae)
- Author
-
Korba, Jan, primary, Opatova, Vera, additional, Calatayud-Mascarell, Arnau, additional, Enguídanos, Alba, additional, Bellvert, Adrià, additional, Adrián, Silvia, additional, Sánchez-Vialas, Alberto, additional, and Arnedo, Miquel A, additional
- Published
- 2022
- Full Text
- View/download PDF
47. Leaf water δ18O reflects water vapour exchange and uptake by C3 and CAM epiphytic bromeliads in Panama
- Author
-
Mejia-Chang, Monica, Reyes-Garcia, Casandra, Seibt, Ulli, Royles, Jessica, Meyer, Moritz T, Jones, Glyn D, Winter, Klaus, Arnedo, Miquel, Griffiths, Howard, Evans, Jessica [0000-0003-0489-6863], Griffiths, Howard [0000-0002-3009-6563], and Apollo - University of Cambridge Repository
- Subjects
Plant Leaves ,Steam ,Metabolisme de les plantes ,Isòtops ,Isotopes ,Panama ,Fotosíntesi ,Water ,Líquens epífits ,Epiphytic lichens ,Photosynthesis ,Oxygen Isotopes ,Plant metabolism - Abstract
The distributions of CAM and C3 epiphytic bromeliads across an altitudinal gradient in western Panama were identified from carbon isotope (δ13C) signals, and epiphyte water balance was investigated via oxygen isotopes (δ18O) across wet and dry seasons. There were significant seasonal differences in leaf water (δ18Olw), precipitation, stored 'tank' water and water vapour. Values of δ18Olw were evaporatively enriched at low altitude in the dry season for the C3 epiphytes, associated with low relative humidity (RH) during the day. Crassulacean acid metabolism (CAM) δ18Olw values were relatively depleted, consistent with water vapour uptake during gas exchange under high RH at night. At high altitude, cloudforest locations, C3 δ18Olw also reflected water vapour uptake by day. A mesocosm experiment with Tillandsia fasciculata (CAM) and Werauhia sanguinolenta (C3) was combined with simulations using a non-steady-state oxygen isotope leaf water model. For both C3 and CAM bromeliads, δ18Olw became progressively depleted under saturating water vapour by day and night, although evaporative enrichment was restored in the C3 W. sanguinolenta under low humidity by day. Source water in the overlapping leaf base 'tank' was also modified by evaporative δ18O exchanges. The results demonstrate how stable isotopes in leaf water provide insights for atmospheric water vapour exchanges for both C3 and CAM systems.
- Published
- 2022
- Full Text
- View/download PDF
48. Genòmica de quelicerats: la desconstrucció dels aràcnids i la base genòmica de la seda, els verins i altres trets de rellevància biològica
- Author
-
Arnedo, Miquel A., Rozas, Julio, Arnedo, Miquel A., and Rozas, Julio
- Abstract
Des de sempre, les aranyes, els escorpins i els seus parents han fascinat i horroritzat els humans per igual. Tot i que es van originar als mars del precambrià, els quelicerats són uns dels organismes més abundants i diversos dels ecosistemes terrestres, on tenen un paper cabdal en les xarxes tròfiques com uns dels depredadors dominants. L’anàlisi genòmica comparativa dels quelicerats és encara a les beceroles: hi ha pocs genomes complets i la seva distribució taxonòmica és força esbiaixada, cosa que en compromet la representativitat. Tot i així, la informació disponible ha contribuït molt a millorar el nostre coneixement sobre l’origen i l’evolució d’aquest grup d’organismes, i l’arquitectura genòmica de trets de rellevància biològica, econòmica i mèdica com ara la seda, els verins, les famílies gèniques implicades en l’olfacte o el gust (sistema quimiosensorial), o l’adaptació a diferents dietes, incloent-hi el parasitisme. L’obtenció de nous genomes d’alta qualitat representatius de l’arbre de la vida dels quelicerats promet futurs descobriments clau, tant per a comprendre la gran diversificació i les extraordinàries adaptacions d’aquests animals fascinants, com per a aplicar-ho en conservació, biomedicina, control sostenible de plagues i obtenció de nous materials biològics., Spiders, scorpions, and their kin have always fascinated and horrified humans alike. Although they originated in the pre-Cambrian seas, chelicerates are one of the most abundant and diverse organisms in terrestrial ecosystems, where they play a key role in food webs as one of the dominant predators. Comparative genomic analysis of chelicerates is still in its infancy: there are few complete genomes, unevenly distributed taxonomically, which compromises their representativeness. However, the available information has greatly contributed to improving our current knowledge about the origin and evolution of the group and the genomic architecture of traits of biological, economic and medical relevance such as the synthesis of silk and venoms, the gene families involved in smell and taste (chemosensory system) or the adaptation to different diets, including parasitism. The acquisition of new high-quality genomes throughout the tree of life of chelicerates, promises key future discoveries for the understanding of the great diversification and extraordinary adaptations of these fascinating animals, but also for their applications in conservation, biomedicine, sustainable pest management and the development of new biological materials.
- Published
- 2022
49. Systematics and phylogeography of western Mediterranean tarantulas (Araneae: Theraphosidae)
- Author
-
Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adriàn, Silvia, Sánchez-Vialas, Alberto, Arnedo, Miquel A., Korba, Jan, Opatova, Vera, Calatayud-Mascarell, Arnau, Enguídanos, Alba, Bellvert, Adrià, Adriàn, Silvia, Sánchez-Vialas, Alberto, and Arnedo, Miquel A.
- Abstract
Theraphosidae is the most diversified family of mygalomorph spiders, commonly known as tarantulas. Two genera inhabit the Mediterranean region: Chaetopelma in the east and Ischnocolus mostly in the western part of the Basin. Their phylogenetic position and the validity of some Ischnocolus species remain unclear. We implemented a multilocus target approach to shed new light on the position of both genera and further integrated molecular data with additional lines of evidence (morphology and ecology) to explore species boundaries in western Mediterranean Ischnocolus. Our results reveal that Ischnocolus and Chaetopelma are not closely related. Chaetopelma formed a clade with the African subfamily Eumenophorinae and Ischnocolus was recovered in a clade comprising all remaining theraphosids. The western Mediterranean Ischnocolus comprises two deeply divergent clades that separated during the Early Miocene and differ in both morphology and lifestyle. We found molecular, morphological and ecological evidence to restore the name Ischnocolus mogadorensis and revalidate this species. We also uncovered distinct allopatric lineages in Ischnocolus elongatus. However, the lack of males, the uniform morphology of females and low within-clade support hampered the assessment of their status and boundaries. Finally, our data support that I. elongatus should be considered a senior synonym of Ischnocolus hancocki and Harpactirella insidiosa.
- Published
- 2022
50. The chromosome-scale assembly of the Canary Islands endemic spider Dysdera silvatica (Arachnida, Araneae) sheds light on the origin and genome structure of chemoreceptor gene families in chelicerates
- Author
-
Escuer, Paula, Pisarenco, Vadim A., Fernandez-Ruiz, Angel A., Vizueta, Joel, Sanchez-Herrero, Jose F., Arnedo, Miquel A., Sanchez-Gracia, Alejandro, Rozas, Julio, Escuer, Paula, Pisarenco, Vadim A., Fernandez-Ruiz, Angel A., Vizueta, Joel, Sanchez-Herrero, Jose F., Arnedo, Miquel A., Sanchez-Gracia, Alejandro, and Rozas, Julio
- Abstract
Here, we present the chromosome-level genome assembly of Dysdera silvatica Schmidt, 1981, a nocturnal ground-dwelling spider endemic from the Canary Islands. The genus Dysdera has undergone a remarkable diversification in this archipelago mostly associated with shifts in the level of trophic specialization, becoming an excellent model to study the genomic drivers of adaptive radiations. The new assembly (1.37 Gb; scaffold N50 of 174.2 Mb), was performed using the chromosome conformation capture scaffolding technique, represents a continuity improvement of more than 4500 times with respect to the previous version. The seven largest scaffolds or pseudochromosomes, which cover 87% of the total assembly size, probably correspond with the seven chromosomes of the karyotype of this species, including a characteristic large X chromosome. To illustrate the value of this new resource we performed a comprehensive analysis of the two major arthropod chemoreceptor gene families (i.e., gustatory and ionotropic receptors). We identified 545 chemoreceptor sequences distributed across all pseudochromosomes, with a notable underrepresentation in the X chromosome. At least 54% of them localize in 83 genomic clusters with a significantly lower evolutionary distances between them than the average of the family, suggesting a recent origin of many of them. This chromosome-level assembly is the first high-quality genome representative of the Synspermiata clade, and just the third among spiders, representing a new valuable resource to gain insights into the structure and organization of chelicerate genomes, including the role that structural variants, repetitive elements and large gene families played in the extraordinary biology of spiders.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.