8 results on '"Arnaud Peramo"'
Search Results
2. PLGA-PEG-supported Pd Nanoparticles as Efficient Catalysts for Suzuki-Miyaura Coupling Reactions in Water
- Author
-
Anaëlle Dumas, Arnaud Peramo, Didier Desmaële, and Patrick Couvreur
- Subjects
Amino acid chemistry ,Palladium nanoparticles ,Suzuki-miyaura cross-coupling ,Chemistry ,QD1-999 - Abstract
Chemical transformations that can be performed selectively under physiological conditions are highly desirable tools to track biomolecules and manipulate complex biological processes. Here, we report a new nanocatalyst consisting of small palladium nanoparticles stabilized on the surface of PLGA-PEG nanoparticles that show excellent catalytic activity for the modification of biological building blocks through Suzuki-Miyaura cross-coupling reactions in water. Brominated or iodinated amino acids were coupled with aryl boronic acids in phosphate buffer in good yields. Interestingly, up to 98% conversion into the coupled amino acid could be achieved in 2 h at 37 °C using the stable, water-soluble cyclic triolborate as organometallic partner in the presence of only 1 mol% of palladium. These results pave the way for the modification of biomolecules in complex biological systems such as the intracellular space.
- Published
- 2016
- Full Text
- View/download PDF
3. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents
- Author
-
Franceline Reynaud, Flavio Dormont, Françoise Gaudin, Julie Mougin, Patrick Couvreur, Arnaud Peramo, Catherine Cailleau, Mariana Varna, Amandine Gendron, and Romain Brusini
- Subjects
Lipopolysaccharides ,Male ,Antioxidant ,Adenosine ,medicine.medical_treatment ,alpha-Tocopherol ,Endogeny ,02 engineering and technology ,Pharmacology ,medicine.disease_cause ,Antioxidants ,Squalene ,chemistry.chemical_compound ,Mice ,Engineering ,Drug Delivery Systems ,Medicine ,Endothelial dysfunction ,Research Articles ,media_common ,0303 health sciences ,Mice, Inbred BALB C ,Multidisciplinary ,SciAdv r-articles ,Life Sciences ,021001 nanoscience & nanotechnology ,Systemic Inflammatory Response Syndrome ,Treatment Outcome ,Female ,medicine.symptom ,0210 nano-technology ,Coronavirus Infections ,medicine.drug ,Research Article ,Drug ,media_common.quotation_subject ,Pneumonia, Viral ,Inflammation ,03 medical and health sciences ,Betacoronavirus ,Animals ,Immunologic Factors ,Pandemics ,030304 developmental biology ,business.industry ,SARS-CoV-2 ,COVID-19 ,medicine.disease ,Endotoxemia ,Coronavirus ,Mice, Inbred C57BL ,Disease Models, Animal ,chemistry ,Nanoparticles ,business ,Oxidative stress - Abstract
Delivering adenosine and antioxidants together could serve as an improved approach for the treatment of acute inflammation., Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.
- Published
- 2020
- Full Text
- View/download PDF
4. Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles
- Author
-
Marie Rouquette, Arnaud Peramo, Clement Mahatsekake, Romain Brusini, Mariana Varna, Sinda Lepetre-Mouelhi, Flavio Dormont, Didier Desmaële, Serge Calet, Frédéric Gobeaux, Patrick Couvreur, Fabienne Testard, Institut Galien Paris-Sud (IGPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), HOLOCHEM, Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Fondation pour la Recherche Médicale (FRM) grant number ECO20160736101, ANR-16-ENM2–0005-01,NanoHeart,NanoHeart, Institut Galien Paris-Saclay (IGPS), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), ANR-16-ENM2-0005,NanoHeart,Squalene-Adenosine nanoparticles for heart ischemia/reperfusion injuries treatment(2016), Institut de Biologie et de Technologies de Saclay (IBITECS), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Physico-chimie, pharmacotechnie, biopharmacie (PCPB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
- Subjects
Multiple stages ,Male ,Squalene ,Adenosine ,Cell Survival ,Pharmaceutical Science ,Nanoparticle ,Nanotechnology ,Context (language use) ,impurity profile ,02 engineering and technology ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,Cell Line ,Rats, Sprague-Dawley ,03 medical and health sciences ,chemistry.chemical_compound ,Mice ,Animals ,scaling-up nanomedicines ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Industrial scale ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Blood Proteins ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,021001 nanoscience & nanotechnology ,Biocompatible material ,drug development ,[SDV.SP.PG]Life Sciences [q-bio]/Pharmaceutical sciences/Galenic pharmacology ,Nanomedicine ,Drug development ,Nanoparticles ,Adsorption ,Nanocarriers ,0210 nano-technology - Abstract
International audience; A large variety of nanoparticle-based delivery systems have become increasingly important for diagnostic and/or therapeutic applications. Yet, the numerous physical and chemical parameters that influence both the biological and colloidal properties of nanoparticles remain poorly understood. This complicates the ability to reliably produce and deliver well-defined nanocarriers which often leads to inconsistencies, conflicts in the published literature and, ultimately, poor translation to the clinics. A critical issue lies in the challenge of scaling-up nanomaterial synthesis and formulation from the lab to industrial scale while maintaining control over their diverse properties. Studying these phenomena early on in the development of a therapeutic agent often requires partnerships between the public and private sectors which are hard to establish. In this study, through the particular case of squalene-adenosine nanoparticles, we reported on the challenges encountered in the process of scaling-up nanomedicines synthesis. Here, squalene (the carrier) was functiona-lized and conjugated to adenosine (the active drug moiety) at an industrial scale in order to obtain large quantities of biocompatible and biodegradable nanoparticles. After assessing nanoparticle batch-to-batch consistency , we demonstrated that the presence of squalene analogs resulting from industrial scale-up may influence several features such as size, surface charge, protein adsorption, cytotoxicity and crystal structure. These analogs were isolated, characterized by multiple stage mass spectrometry, and their influence on nanoparticle properties further evaluated. We showed that slight variations in the chemical profile of the nanocarrier's constitutive material can have a tremendous impact on the reproducibility of nanoparticle properties. In a context where several generics of approved nanoformulated drugs are set to enter the market in the coming years, characterizing and solving these issues is an important step in the pharmaceutical development of nanomedicines.
- Published
- 2019
- Full Text
- View/download PDF
5. Squalene-based nanoparticles for the targeting of atherosclerotic lesions
- Author
-
Romain Brusini, Mariana Varna, Catherine Cailleau, Valérie Nicolas, Arnaud Peramo, Patrick Couvreur, and Flavio Dormont
- Subjects
Male ,Squalene ,Biodistribution ,Pharmaceutical Science ,02 engineering and technology ,030226 pharmacology & pharmacy ,Lesion ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,Drug Delivery Systems ,0302 clinical medicine ,medicine ,Animals ,Mice, Knockout ,Bioconjugation ,Apoe mice ,Rhodamines ,Chemistry ,Atherosclerosis ,021001 nanoscience & nanotechnology ,Mice, Inbred C57BL ,RAW 264.7 Cells ,Cancer research ,Nanoparticles ,Plaque imaging ,medicine.symptom ,0210 nano-technology - Abstract
Native low-density lipoproteins (LDL) naturally accumulate at atherosclerotic lesions and are thought to be among the main drivers of atherosclerosis progression. Numerous nanoparticular systems making use of recombinant lipoproteins have been developed for targeting atherosclerotic plaque. These innovative formulations often require complicated purification and synthesis procedures which limit their eventual translation to the clinics. Recently, squalenoylation has appeared as a simple and efficient technique for targeting agents to endogenous lipoproteins through a bioconjugation approach. In this study, we have developed a fluorescent squalene bioconjugate to evaluate the biodistribution of squalene-based nanoparticles in an ApoE-/- model of atherosclerosis. By accumulating in LDL endogenous nanoparticles, the squalene bioconjugation could serve as an efficient targeting platform for atherosclerosis. Indeed, in this proof of concept, we show that our squalene-rhodamine (SQRho) nanoparticles, could accumulate in the aortas of atherosclerotic animals. Histological evaluation confirmed the presence of atherosclerotic lesions and the co-localization of SQRho bioconjugates at the lesion sites.
- Published
- 2020
- Full Text
- View/download PDF
6. Selective modification of a native protein in a patient tissue homogenate using palladium nanoparticles
- Author
-
Ruy A. N. Louzada, Benoit Lambert, Patrick Couvreur, Stéphanie Yen-Nicolaÿ, Didier Desmaële, Anaëlle Dumas, Arnaud Peramo, Shannon Pecnard, Jacques Young, Corinne Dupuy, Hynd Remita, Raphael Corre, Mireille Benoît, Institut Galien Paris-Saclay (IGPS), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Galien Paris-Sud (IGPS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique D'Orsay (LCPO), Faculté de Pharmacie, IPSIT, Université Paris Sud, Stabilité Génétique et Oncogenèse (UMR 8200), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), U693, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Sud (Paris 11), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), UMS IPSIT, Plate forme d'imagerie cellulaire, Université Paris-Saclay, Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique, Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR93-Université Paris-Sud - Paris 11 (UP11), and Physico-chimie, pharmacotechnie, biopharmacie (PCPB)
- Subjects
[SDV]Life Sciences [q-bio] ,medicine.medical_treatment ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,010402 general chemistry ,01 natural sciences ,Catalysis ,Materials Chemistry ,medicine ,Native protein ,[CHIM]Chemical Sciences ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,Tissue homogenate ,010405 organic chemistry ,Chemistry ,Thyroid ,Metals and Alloys ,Palladium nanoparticles ,[CHIM.CATA]Chemical Sciences/Catalysis ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,medicine.anatomical_structure ,Biochemistry ,Ceramics and Composites ,Thyroglobulin - Abstract
International audience; We have developed new benign palladium nanoparticles able to catalyze the Suzuki-Miyaura cross-coupling reaction on human thyroglobulin (Tg), a naturally iodinated protein produced by the thyroid gland, in homogenates from patients' tissues. This represents the first example of a chemoselective native protein modification using transition metal nanoobjects in near-organ medium.
- Published
- 2019
- Full Text
- View/download PDF
7. Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?
- Author
-
Arnaud Peramo, Semen O. Yesylevskyy, Christophe Ramseyer, Dunja Sobot, Patrick Couvreur, Simona Mura, Didier Desmaële, Stéphanie Denis, Bruno Cardey, Institut Galien Paris-Sud (IGPS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Physico-chimie, pharmacotechnie, biopharmacie (PCPB), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Cholesterol ,General Chemical Engineering ,02 engineering and technology ,General Chemistry ,Pharmacology ,021001 nanoscience & nanotechnology ,Anticancer drug ,Gemcitabine ,3. Good health ,03 medical and health sciences ,Squalene ,chemistry.chemical_compound ,030104 developmental biology ,chemistry ,medicine ,[CHIM]Chemical Sciences ,Nanocarriers ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,medicine.drug - Abstract
Comptes Rendus Chimie - In Press.Proof corrected by the author Available online since jeudi 22 mars 2018
- Published
- 2018
- Full Text
- View/download PDF
8. PLGA-PEG-supported Pd Nanoparticles as Efficient Catalysts for Suzuki-Miyaura Coupling Reactions in Water
- Author
-
Anaëlle Dumas Arnaud Peramo Didier Desmaële Patrick Couvreur
- Abstract
Chemical transformations that can be performed selectively under physiological conditions are highly desirable tools to track biomolecules and manipulate complex biological processes. Here we report a new nanocatalyst consisting of small palladium nanoparticles stabilized on the surface of PLGA PEG nanoparticles that show excellent catalytic activity for the modification of biological building blocks through Suzuki Miyaura cross coupling reactions in water. Brominated or iodinated amino acids were coupled with aryl boronic acids in phosphate buffer in good yields. Interestingly up to 98 conversion into the coupled amino acid could be achieved in 2 h at 37 °C using the stable water soluble cyclic triolborate as organometallic partner in the presence of only 1 mol of palladium. These results pave the way for the modification of biomolecules in complex biological systems such as the intracellular space.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.