13 results on '"Ariadna Boloix"'
Search Results
2. The oral KIF11 inhibitor 4SC‐205 exhibits antitumor activity and potentiates standard and targeted therapies in primary and metastatic neuroblastoma models
- Author
-
Marc Masanas, Nuria Masiá, Leticia Suárez‐Cabrera, Mireia Olivan, Aroa Soriano, Blanca Majem, Laura Devis‐Jauregui, Rebeca Burgos‐Panadero, Carlos Jiménez, Pau Rodriguez‐Sodupe, Ariadna Boloix, Ignasi Toledano, Gabriela Guillén, Alexandra Navarro, David Llobet‐Navas, Alberto Villanueva, Josep Sánchez de Toledo, Josep Roma, Rosa Noguera, Lucas Moreno, Rolf Krauss, Soledad Gallego, Anna Santamaria, and Miguel F. Segura
- Subjects
Medicine (General) ,R5-920 - Published
- 2021
- Full Text
- View/download PDF
3. Long Non-coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer
- Author
-
Ariadna Boloix, Marc Masanas, Carlos Jiménez, Roberta Antonelli, Aroa Soriano, Josep Roma, Josep Sánchez de Toledo, Soledad Gallego, and Miguel F. Segura
- Subjects
PVT1 ,lncRNA ,epigenetic ,8q32 ,pediatric cancer ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
In recent decades, biomedical research has focused on understanding the functionality of the human translated genome, which represents a minor part of all genetic information transcribed from the human genome. However, researchers have become aware of the importance of non-coding RNA species that constitute the vast majority of the transcriptome. In addition to their crucial role in tissue development and homeostasis, mounting evidence shows non-coding RNA to be deregulated and functionally contributing to the development and progression of different types of human disease including cancer both in adults and children. Small non-coding RNAs (i.e., microRNA) are in the vanguard of clinical research which revealed that RNA could be used as disease biomarkers or new therapeutic targets. Furthermore, many more expectations have been raised for long non-coding RNAs, by far the largest fraction of non-coding transcripts, and still fewer findings have been translated into clinical applications. In this review, we center on PVT1, a large and complex long non-coding RNA that usually confers oncogenic properties on different tumor types. We focus on the compilation of early advances in the field of pediatric tumors which often lags behind clinical improvements in adult tumors, and provide a rationale to continue studying PVT1 as a possible functional contributor to pediatric malignancies and as a potential prognostic marker or therapeutic target.
- Published
- 2019
- Full Text
- View/download PDF
4. MicroRNA Profiling of Cell Lines and Xenografts by Quantitative PCR
- Author
-
Ariadna Boloix and Miguel F. Segura
- Published
- 2022
- Full Text
- View/download PDF
5. MicroRNA Profiling of Cell Lines and Xenografts by Quantitative PCR : MicroRNA Expression Level Determination by qPCR
- Author
-
Ariadna, Boloix and Miguel F, Segura
- Subjects
Mice ,MicroRNAs ,Disease Models, Animal ,Animals ,Humans ,Heterografts ,Real-Time Polymerase Chain Reaction ,Cell Line - Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in regulating gene expression at the post-transcriptional level, possibly at any level of the cellular physiology. Furthermore, their deregulation has been observed in a myriad of human diseases including cancer. Therefore, miRNA-based therapies are directed to inhibit the function of oncogenic miRNA or to restore the function of tumor-suppressive miRNAs. Here, we describe how to analyze miRNA levels after the transfection of miRNAs of interest using different transfection reagents or intravenous administration of miRNAs conjugated to lipid nanoparticles in cell lines and in mouse xenograft models.
- Published
- 2022
6. Methodological advances in the discovery of novel neuroblastoma therapeutics
- Author
-
Juliet C. Gray, Jamie I. Fletcher, Adela Cañete, Josep Roma, Olga Piskareva, Carlos Jiménez, Leonor Cerdá-Alberich, Miguel F. Segura, Lucas Moreno, Michelle Haber, Aroa Soriano, Ariadna Boloix, Soledad Gallego, and Blanca Martínez de las Heras
- Subjects
Oncology ,medicine.medical_specialty ,business.industry ,Childhood cancer ,Radiogenomics ,Cancer ,Newly diagnosed ,medicine.disease ,Combined Modality Therapy ,Omics data ,Neuroblastoma ,Artificial Intelligence ,Internal medicine ,Drug Discovery ,medicine ,Humans ,Immunotherapy ,Molecular Targeted Therapy ,Liquid biopsy ,business ,Child ,Survival rate - Abstract
Introduction Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate Areas covered The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. Expert opinion While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.
- Published
- 2021
7. Engineering DNA-Grafted Quatsomes as Stable Nucleic Acid-Responsive Fluorescent Nanovesicles
- Author
-
Jaume Veciana, Danila Moscone, Ariadna Boloix, Judit Morla-Folch, Nora Ventosa, Miguel F. Segura, Lorenzo Stella, Sara Bobone, Alessandro Porchetta, Mariana Köber, Mónica Roldán, Marianna Rossetti, Lorena Baranda, Institut Català de la Salut, [Rossetti M, Stella L, Bobone S, Baranda L] Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy. [Morlà-Folch J] Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain. [Boloix A, Segura MF] Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain, Vall d'Hebron Barcelona Hospital Campus, European Commission, Ministerio de Ciencia e Innovación (España), Instituto de Salud Carlos III, Ministero dell'Istruzione, dell'Università e della Ricerca, and Ministerio de Economía y Competitividad (España)
- Subjects
Materials science ,Nucleic Acids, Nucleotides, and Nucleosides::Antisense Elements (Genetics)::RNA, Antisense::MicroRNAs [CHEMICALS AND DRUGS] ,Fluorescence ,Biomaterials ,Nanovesicles ,neoplasias [ENFERMEDADES] ,chemistry.chemical_compound ,Settore CHIM/01 ,Other subheadings::/chemistry [Other subheadings] ,Electrochemistry ,Otros calificadores::/química [Otros calificadores] ,Otros calificadores::/terapia [Otros calificadores] ,MicroARN ,Biosensing ,Càncer - Tractament ,Other subheadings::/therapy [Other subheadings] ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Neoplasms [DISEASES] ,chemistry ,Biochemistry ,Responsive nanomaterials ,Nucleic acid ,Materials nanoestructurats ,nucleótidos y nucleósidos de ácidos nucleicos::elementos antisentido (genética)::ARN antiparalelo::microARN [COMPUESTOS QUÍMICOS Y DROGAS] ,Biosensor ,DNA - Abstract
The development of artificial vesicles into responsive architectures capable of sensing the biological environment and simultaneously signaling the presence of a specific target molecule is a key challenge in a range of biomedical applications from drug delivery to diagnostic tools. Herein, the rational design of biomimetic DNA-grafted quatsome (QS) nanovesicles capable of translating the binding of a target molecule to amphiphilic DNA probes into an optical output is presented. QSs are synthetic lipid-based nanovesicles able to confine multiple organic dyes at the nanoscale, resulting in ultra-bright soft materials with attractiveness for sensing applications. Dye-loaded QS nanovesicles of different composition and surface charge are grafted with fluorescent amphiphilic nucleic acid-based probes to produce programmable FRET-active nanovesicles that operate as highly sensitive signal transducers. The photophysical properties of the DNA-grafted nanovesicles are characterized and the highly selective, ratiometric detection of clinically relevant microRNAs with sensitivity in the low nanomolar range are demonstrated. The potential applications of responsive QS nanovesicles for biosensing applications but also as functional nanodevices for targeted biomedical applications is envisaged., This work was financially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska- Curie grant agreement “Nano-Oligo Med” (No 778133), Ministry of Science and Innovation (MINECO), Spain, through the “MOL4BIO” project (PID2019-105622RB-I00) and by Instituto de Salud Carlos III (DTS20/00018), Italian Ministry of University and Research (Project of National Interest, PRIN, 2017Y2PAB8_004 through the project “Cutting Edge Analytical Chemistry Methodologies and Bio-Tools to Boost Precision Medicine in Hormone-Related Diseases”. M.R. was supported from a Fondazione Umberto Veronesi postdoctoral fellowship. Furthermore, ICMAB-CSIC acknowledges support from the MINECO through the Severo Ochoa Programme for Centers of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S). Quatsome production and their physicochemical characterization has been performed by the Biomaterial Processing and Nanostructuring Unit (U6) of the ICTS “NANBIOSIS”, a unit of the CIBER network in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) located at the Institute of Materials Science of Barcelona (ICMAB-CSIC).
- Published
- 2021
8. Engineering pH-Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
- Author
-
Dganit Danino, Alba Córdoba, Santi Sala, Ariadna Boloix, Lorenzo Albertazzi, Inbal Abutbul-Ionita, Mariana Köber, Marc Masanas, Soledad Gallego, Josep Sánchez de Toledo, Javier Repetto, Nora Ventosa, Nathaly Segovia, Natalia Feiner-Gracia, Miguel F. Segura, Aroa Soriano, Rosa Pascarella, Josep Merlo-Mas, Josep Roma, Jaume Veciana, Guillem Vargas-Nadal, Laia Foradada, Institut Català de la Salut, [Boloix A] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Madrid, Spain. [Feiner-Gracia N, Pascarella R] Nanoscopy for Nanomedicine Group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona, Spain. Department of Biomedical Engineering Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology Eindhoven, The Netherlands. [Köber M] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Madrid, Spain. [Repetto J] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. [Soriano A, Masanas M, Roma J, Sánchez de Toledo J, Gallego S] Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Foradada L] Peptomyc S.L., Edifici Cellex Barcelona, Spain. [Segura MF] Molecular Nanoscience and Organic Materials (Nanomol) Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB. Laboratori de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain, Vall d'Hebron Barcelona Hospital Campus, Ministerio de Educación, Cultura y Deporte (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (España), Matem lo Bitxo, Asociación Española Contra el Cáncer, Generalitat de Catalunya, Boloix, Ariadna, Köber, Mariana, Soriano, Aroa, Masanas, Marc, Segovia, Nathaly, Vargas Nadal, Guillem, Merlo Mas, Josep, Danino, Dganit, Foradada, Laia, Roma, Josep, Toledo, Josep Sánchez de, Gallego, Soledad, Veciana, Jaume, Albertazzi, Lorenzo, Segura, Miguel F., Ventosa, Nora, ICMS Core, Nanoscopy for Nanomedicine, Molecular Biosensing for Med. Diagnostics, Boloix, Ariadna [0000-0002-1648-5589], Köber, Mariana [0000-0001-9962-7900], Soriano, Aroa [0000-0001-9659-1471], Masanas, Marc [0000-0002-2249-8554], Segovia, Nathaly [0000-0001-8814-6095], Vargas Nadal, Guillem [0000-0003-4383-1325], Merlo Mas, Josep [0000-0002-3698-6655], Danino, Dganit [0000-0002-9782-4940], Foradada, Laia [0000-0002-0589-4360], Roma, Josep [0000-0001-7692-6123], Toledo, Josep Sánchez de [0000-0002-1034-1920], Gallego, Soledad [0000-0002-4712-9624], Veciana, Jaume [0000-0003-1023-9923], Albertazzi, Lorenzo [0000-0002-6837-0812], Segura, Miguel F. [0000-0003-0916-3618], and Ventosa, Nora [0000-0002-8008-4974]
- Subjects
Micro RNAs ,Cancer therapy ,nanovesicles ,siRNAs delivery ,Otros calificadores::Otros calificadores::/farmacoterapia [Otros calificadores] ,Endogeny ,Tumor cells ,SDG 3 – Goede gezondheid en welzijn ,Other subheadings::Other subheadings::/drug therapy [Other subheadings] ,Nanovesicles ,Biomaterials ,neoplasias [ENFERMEDADES] ,neuroblastoma ,SDG 3 - Good Health and Well-being ,Neuroblastoma ,Neoplasms ,microRNA ,quatsomes ,medicine ,Humans ,General Materials Science ,Tumors ,miRNAs delivery ,MicroARN ,Nanopartícules ,nanocarriers ,Chemistry ,Càncer - Tractament ,General Chemistry ,Hydrogen-Ion Concentration ,medicine.disease ,Pediatric cancer ,Cell biology ,pediatric cancer ,Clinical Practice ,Neoplasms [DISEASES] ,Cytosol ,MicroRNAs ,cancer therapy ,Nanoparticles ,Nanocarriers ,Biotechnology - Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs, which are attracting a growing interest as therapeutic molecules due to their central role in major diseases. However, the transformation of these biomolecules into drugs is limited due to their unstability in the bloodstream, caused by nucleases abundantly present in the blood, and poor capacity to enter cells. The conjugation of miRNAs to nanoparticles (NPs) could be an effective strategy for their clinical delivery. Herein, the engineering of non-liposomal lipid nanovesicles, named quatsomes (QS), for the delivery of miRNAs and other small RNAs into the cytosol of tumor cells, triggering a tumor-suppressive response is reported. The engineered pH-sensitive nanovesicles have controlled structure (unilamellar), size (24 weeks), and are prepared by a green, GMP compliant, and scalable one-step procedure, which are all unavoidable requirements for the arrival to the clinical practice of NP based miRNA therapeutics. Furthermore, QS protect miRNAs from RNAses and when injected intravenously, deliver them into liver, lung, and neuroblastoma xenografts tumors. These stable nanovesicles with tunable pH sensitiveness constitute an attractive platform for the efficient delivery of miRNAs and other small RNAs with therapeutic activity and their exploitation in the clinics., The funding was received by Ministerio de Educación, Cultura y Deporte (Grant no. FPU16/01099), Ministerio de Economía, Industria y Competividad (Grants MAT2016-80820-R, MAT2016-80826-R and SAF2016-75241-R), the Ministry of Science and Innovation (MINECO) of Spain through grant PID2019-105622RB-I00, from Instituto de Salud Carlos III (Grant no. CP16/00006, PI17/00564, PI20/00530, DTS20/00018) (Co-funded by European Regional Development Fund/European Social Fund) “Investing in your future”), from the EuroNanoMed II platform through the NanoVax project, from CIBER-BBN through grant TAG-SMARTLY, Joan Petit Foundation, Asociación Matem Lo Bitxo and Asociación Española Contra el Cáncer (Grant no. LABAE18009SEGU), as well as, Generalitat de Catalunya through the Centres de Recerca de Catalunya (CERCA) programme and grant no. 2017-SGR-918, and from Agency for Management of University and Research Grants (AGAUR) (Grant no 2018LLAV0064 and SIFECAT IU68-010017). Furthermore, ICMAB-CSIC acknowledges support from the MINECO through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S). Quatsome production and their physicochemical characterization was performed by the ICTS “NANBIOSIS,” more specifically in the Biomaterial Processing and Nanostructuring Unit (U6), Unit of the CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBER-BBN) located at the Institute of Materials Science of Barcelona (ICMAB-CSIC). The authors thank the UAB Microscopy service for their help in recording cryo-TEM images. The authors also thank Mr. Adolfo de Hoyos-Limon for pKa measurements, Ms. Patricia Pérez for her help in in vitro experiments, the members of Laboratory Animal Service Unit of Vall d'Hebron Research Institute for their help in the in vivo experiment. The authors thank Editage (www.editage.com) and Ms. Christine O'Hara for English language correction. The authors acknowledge Biorender.com for allowing the adaptation of their templates. Retrieved from https://app.biorender.com/biorender-templates., With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).
- Published
- 2021
9. The oral KIF11 inhibitor 4SC‐205 exhibits antitumor activity and potentiates standard and targeted therapies in primary and metastatic neuroblastoma models
- Author
-
Carlos Jiménez, Rebeca Burgos-Panadero, Alberto Villanueva, Aroa Soriano, Anna Santamaria, Josep Sánchez de Toledo, Marc Masanas, Nuria Masia, David Llobet-Navas, Pau Rodriguez-Sodupe, Josep Roma, Ignasi Toledano, Ariadna Boloix, G. Guillén, Soledad Gallego, Alexandra Navarro, Lucas Moreno, Rosa Noguera, Leticia Suárez-Cabrera, Blanca Majem, Rolf Krauss, Miguel F. Segura, Laura Devis-Jauregui, Mireia Olivan, Institut Català de la Salut, [Masanas M, Soriano A, Jiménez C, Boloix A, Roma J, Segura MF] Grup de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Masiá N, Suárez-Cabrera L, Majem B, Toledano I, Santamaria A] Laboratori de Cicle Cel•lular i Càncer, Grup de Recerca Biomèdica en Urologia, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Olivan M] Laboratori de Cicle Cel•lular i Càncer, Grup de Recerca Biomèdica en Urologia, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Translational Oncology Laboratory, Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona (UB), L’Hospitalet de Llobregat, Spain. [Guillén G] Grup de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Departament de Cirurgia, Universitat Autònoma de Barcelona, Bellaterra, Spain. [Navarro A] Servei de Patologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Sánchez de Toledo J] Grup de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Catalan Institute of Oncology (ICO), Barcelona, Spain. [Moreno L, Gallego S] Grup de Recerca Translacional en Càncer en la Infància i l’Adolescència, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Servei d’Oncologia i Hematologia Pediàtriques, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain, and Vall d'Hebron Barcelona Hospital Campus
- Subjects
Medicine (General) ,Neuroblastoma - Tractament ,neoplasias::neoplasias por tipo histológico::neoplasias de células germinales y embrionarias::tumores neuroectodérmicos::neoplasias neuroepiteliales::tumores neuroectodérmicos primitivos::tumores neuroectodérmicos primitivos periféricos::neuroblastoma [ENFERMEDADES] ,Metastatic neuroblastoma ,Medicació oral ,Medicaments antineoplàstics - Ús terapèutic ,Otros calificadores::Otros calificadores::/farmacoterapia [Otros calificadores] ,Medicine (miscellaneous) ,Administration, Oral ,Kinesins ,Antineoplastic Agents ,Other subheadings::Other subheadings::/drug therapy [Other subheadings] ,Letter to Editor ,Neoplasms::Neoplasms by Histologic Type::Neoplasms, Germ Cell and Embryonal::Neuroectodermal Tumors::Neoplasms, Neuroepithelial::Neuroectodermal Tumors, Primitive::Neuroectodermal Tumors, Primitive, Peripheral::Neuroblastoma [DISEASES] ,Mice ,Neuroblastoma ,R5-920 ,Cell Line, Tumor ,terapéutica::farmacoterapia::vías de administración de medicamentos::administración oral [TÉCNICAS Y EQUIPOS ANALÍTICOS, DIAGNÓSTICOS Y TERAPÉUTICOS] ,Medicine ,Animals ,Humans ,Antitumor activity ,Primary (chemistry) ,business.industry ,acciones y usos químicos::acciones farmacológicas::usos terapéuticos::antineoplásicos [COMPUESTOS QUÍMICOS Y DROGAS] ,Disease Models, Animal ,Therapeutics::Drug Therapy::Drug Administration Routes::Administration, Oral [ANALYTICAL, DIAGNOSTIC AND THERAPEUTIC TECHNIQUES, AND EQUIPMENT] ,Cancer research ,Molecular Medicine ,Chemical Actions and Uses::Pharmacologic Actions::Therapeutic Uses::Antineoplastic Agents [CHEMICALS AND DRUGS] ,business - Abstract
Inhibidor de KIF11; Terapias dirigidas; Metástasis Inhibidor de KIF11; Teràpies dirigides; Metàstasi KIF11 inhibitor; Targeted therapies; Metastasis In summary, our study provides a rationale for the future therapeutic integration in clinical trials of 4SC-205, an structurally distinct oral KIF11 inhibitor that shows potent antitumor activity in multiple preclinical neuroblastoma models and sensitizes neuroblastoma cells to standard chemotherapy and specific neuroblastoma-targeted therapies. The financial support for this research was provided by Instituto de Salud Calos III (PI20/00530 to Miguel F. Segura; PI20/01107 to Rosa Noguera; PI17/02248 and CPII18/00027 to Anna Santamaria; PI19/01320 to Alberto Villanueva); Ministerio de Educación, Cultura y Deporte (Grant no. FPU16/01099 to Marc Masanas). This work was also supported by the Asociación NEN (Nico contra el cancer infantil 2017–PVR00157).
- Published
- 2021
10. The antitumour drug ABTL0812 impairs neuroblastoma growth through endoplasmic reticulum stress-mediated autophagy and apoptosis
- Author
-
Roberta Antonelli, Marc Yeste-Velasco, Jose Alfon, Josep Sánchez de Toledo, Miguel F. Segura, Jose M. Lizcano, Aroa Soriano, Carlos Jiménez, Marc Masanas, Josep Roma, Carles Domenech, Laia París-Coderch, Héctor Pérez-Montoyo, Lucas Moreno, Soledad Gallego, Tatiana Erazo, Pau Muñoz-Guardiola, and Ariadna Boloix
- Subjects
Cancer Research ,Programmed cell death ,Immunology ,Antineoplastic Agents ,Apoptosis ,Drug development ,Endoplasmic Reticulum ,Article ,Paediatric cancer ,Inhibitory Concentration 50 ,Mice ,Neuroblastoma ,Cellular and Molecular Neuroscience ,Cell Line, Tumor ,Autophagy ,Animals ,Humans ,Cytotoxic T cell ,Medicine ,lcsh:QH573-671 ,Isotretinoin ,Cell Proliferation ,lcsh:Cytology ,business.industry ,Endoplasmic reticulum ,Cell Biology ,Endoplasmic Reticulum Stress ,medicine.disease ,Pancreatic Neoplasms ,Linoleic Acids ,Cancer cell ,Unfolded Protein Response ,Unfolded protein response ,Cancer research ,Female ,business ,Neoplasm Transplantation ,DNA Damage - Abstract
Neuroblastoma is the leading cause of cancer death in children aged 1 to 4 years. Particularly, five-year overall survival for high-risk neuroblastoma is below 50% with no curative options when refractory or relapsed. Most of current therapies target cell division and proliferation, thereby inducing DNA damage and programmed cell death. However, aggressive tumours often present alterations of these processes and are resistant to therapy. Therefore, exploring alternative pathways to induce tumour cell death will provide new therapeutic opportunities for these patients. In this study we aimed at testing the therapeutic potential of ABTL0812, a novel anticancer drug that induces cytotoxic autophagy to eliminate cancer cells, which is currently in phase II clinical trials of adult tumours. Here, we show that ABTL0812 impaired the viability of clinical representative neuroblastoma cell lines regardless of genetic alterations associated to bad prognosis and resistance to therapy. Oral administration of ABTL0812 to mice bearing neuroblastoma xenografts impaired tumour growth. Furthermore, our findings revealed that, in neuroblastoma, ABTL0812 induced cancer cell death via induction of endoplasmic reticulum stress, activation of the unfolded protein response, autophagy and apoptosis. Remarkably, ABTL0812 potentiated the antitumour activity of chemotherapies and differentiating agents such as irinotecan and 13-cis-retinoic acid. In conclusion, ABTL0812 distinctive mechanism of action makes it standout to be used alone or in combination in high-risk neuroblastoma patients.
- Published
- 2020
- Full Text
- View/download PDF
11. Nuevas estrategias terapéuticas para el neuroblastoma basadas en el uso de microRNAs
- Author
-
Laia París-Coderch, Ariadna Boloix, Miguel F. Segura, Aroa Soriano, Josep Roma, Josep Sánchez de Toledo, and Soledad Gallego
- Subjects
0301 basic medicine ,03 medical and health sciences ,Neuroblastoma ,030104 developmental biology ,0302 clinical medicine ,030220 oncology & carcinogenesis ,Pediatrics, Perinatology and Child Health ,Epigenetics ,MicroRNA ,Pediatrics ,RJ1-570 - Abstract
Resumen: El neuroblastoma (NB) es el tumor sólido más común en niños y adolescentes y representa hasta un 15% de la muerte infantil asociada al cáncer. Tiene su origen en el sistema nervioso simpático y su comportamiento puede llegar a ser muy agresivo y no responder a los tratamientos actuales. En esta revisión se recogen nuevas alternativas terapéuticas basadas en la epigenética, es decir, en moduladores de la expresión génica como los microRNAs y su potencial aplicación clínica en NB. Abstract: Neuroblastoma (NB) is the most common solid tumour in children and adolescents, and accounts for up to 15% of all cancer deaths in this group. It originates in the sympathetic nervous system, and its behaviour can be very aggressive and become resistant to current treatments. A review is presented, summarising the new alternative therapies based on epigenetics, i.e., modulators of gene expression, such as microRNAs and their potential application in the clinical practice of NB treatment.
- Published
- 2016
12. PO-353 Functional high-throughput screening reveals multiple tumour-suppressive microRNAs in neuroblastoma
- Author
-
Miguel F. Segura, Carlos Jiménez, Nuria Masia, Ariadna Boloix, Josep Roma, Aroa Soriano, J. Sánchez de Toledo, Soledad Gallego, Anna Santamaria, and Marc Masanas
- Subjects
Cancer Research ,Cell growth ,In silico ,Cancer ,Biology ,Cell cycle ,medicine.disease ,Oncology ,In vivo ,Cell culture ,Neuroblastoma ,microRNA ,medicine ,Cancer research - Abstract
Introduction Despite multimodal therapies, a significant percentage of high-risk neuroblastomas remain incurable. One of the major causes of treatment failure is the development of multi-drug resistance through multiple mechanisms. Therefore, targeting single elements of a pathway may not suffice. In this respect, it is desirable to find molecules, such as microRNAs (miRNAs), which can regulate multiple cellular processes, thereby minimising the risk of resistance and improving the clinical response. Material and methods To identify tumour-suppressive miRNAs in neuroblastoma, we performed a high-throughput functional screening using 2048 individual miRNAs. Cell proliferation and viability were analysed by crystal violet staining, FACS and western-blot. MiRNA-target prediction analysis was performed in silico and further validated by quantitative real-time PCR, western blot and luciferase-reporter assays. The therapeutic potential of miRNA-restoration therapies in vivo was validated using xenograft models. Statistical significance was determined by two-tailed unpaired Student’s t-test. Results and discussions Several miRNA whose overexpression reduced cell proliferation and viability in multiple chemoresistant NB cell lines in vitro and in vivo were identified. Those with the highest therapeutic potential were found to target several genes related to cancer, cell cycle and cell survival. Conclusion MicroRNA-based restoration therapies could be a therapeutic alternative against neuroblastomas resistant to conventional therapies.
- Published
- 2018
- Full Text
- View/download PDF
13. [Novel micro RNA-based therapies for the treatment of neuroblastoma]
- Author
-
Aroa Soriano, Miguel F. Segura, Josep Roma, Josep Sánchez de Toledo, Soledad Gallego, Ariadna Boloix, and Laia París-Coderch
- Subjects
0301 basic medicine ,Pathology ,medicine.medical_specialty ,Sympathetic nervous system ,Pediatrics ,RJ1-570 ,Epigenesis, Genetic ,03 medical and health sciences ,Neuroblastoma ,0302 clinical medicine ,Management of Technology and Innovation ,microRNA ,Gene expression ,medicine ,Humans ,Epigenetics ,Child ,Solid tumour ,business.industry ,Cancer ,MicroRNA ,medicine.disease ,Clinical Practice ,MicroRNAs ,030104 developmental biology ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,Cancer research ,Epigenética ,business - Abstract
Neuroblastoma (NB) is the most common solid tumour in children and adolescents, and accounts for up to 15% of all cancer deaths in this group. It originates in the sympathetic nervous system, and its behaviour can be very aggressive and become resistant to current treatments. A review is presented, summarising the new alternative therapies based on epigenetics, i.e. modulators of gene expression, such as microRNAs and their potential application in the clinical practice of NB treatment. Resumen: El neuroblastoma (NB) es el tumor sólido más común en niños y adolescentes y representa hasta un 15% de la muerte infantil asociada al cáncer. Tiene su origen en el sistema nervioso simpático y su comportamiento puede llegar a ser muy agresivo y no responder a los tratamientos actuales. En esta revisión se recogen nuevas alternativas terapéuticas basadas en la epigenética, es decir, en moduladores de la expresión génica como los microRNAs y su potencial aplicación clínica en NB.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.