5 results on '"Araujo GHM"'
Search Results
2. Full-thickness burn scar treatment using a combination of microneedling and platelet-rich plasma in animal model.
- Author
-
Santos KC, Dos Santos BM, Ribeiro M, de Miranda Moraes J, Cagnini DQ, Liebano RE, and Araujo GHM
- Abstract
Microneedling (MA) and platelet-rich plasma (PRP) therapies have shown potential for enhancing scar repair through collagen production and growth factor release, yet their effects on full-thickness burn scars remain underexplored. This study evaluated the impact of MA, PRP, and combined MA + PRP treatments on scar healing in a rat model of full-thickness burns. Fifty adult rats were divided into four groups: control, MA, PRP, and MA + PRP. Treatments were administered 21 days post-burn, and animals were evaluated at 14- and 21-days post-treatment. Macroscopic, histopathological, and morphometric analyses were performed to assess epithelialization, extracellular matrix (ECM) organization, and collagen deposition. The combination of MA + PRP demonstrated superior outcomes, showing enhanced ECM organization, significant collagen deposition, increased angiogenesis, and an improved inflammatory profile with mononuclear cell infiltration. Morphometric analysis confirmed a substantial increase in collagen content, particularly in the MA + PRP group, supporting improved tissue remodeling and scar maturation. These findings suggest that combined MA + PRP therapy may be a promising approach for promoting effective and accelerated burn scar healing. Further research is warranted to optimize protocols for clinical application., Competing Interests: Declaration of Competing Interest The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Use of adipose derived stem cells accelerates the healing process in third-degree burns.
- Author
-
Ribeiro M, Santos KC, Macedo MR, de Souza GA, Neto FIA, Araujo GHM, Cavalcante DR, Costa FF, de Sá Ferreira G, Peixoto LA, de Miranda Moraes J, and Vulcani VAS
- Subjects
- Rats, Animals, Rats, Wistar, Skin pathology, Wound Healing radiation effects, Stem Cells metabolism, Stem Cells pathology, Burns pathology, Soft Tissue Injuries, Low-Level Light Therapy methods
- Abstract
Introduction: Burns are defined as a traumatic injury, usually of thermal origin, that affects the epithelial and adjacent tissue and is classified according to the depth reached. Tissue repair involved in this type of injury is often a challenge both due to its severity and the multiplicity of complications. Regenerative medicine has focused on the use of low-level laser photobiomodulation therapy (LLLT) and adipose-derived stem cells (ADSC), especially in the early stages of the process, to promote better healing and shorten repair time. Therefore, aim of this study was to evaluate the action of LLLT (660 nm) and ADSC in the repair process of burned skin tissue and investigate the association of the techniques (LLLT and ADSC)., Materials and Methods: An in vivo study was carried out using 96 rats (Wister) with a scald burn model at a temperature of 95ºC, exposing the animal's back for 14 s. Animals were randomized into seven groups and three periods, five, 14 and 21 days. The groups included GC: Control group, ADSC-: Group treated with CD49d negative cells, ADSC+ : Group treated with positive CD49d cells, CULT: Group treated with conventional isolation cells, LLLT: Group treated only with LLLT Low Power Laser, ADSC-LLLT: Group treated with CD49d negative cells and LLLT. ADSC+LLLT: Group treated with positive CD49d cells and LLLT. The groups treated with LLLT (660 nm; 5 J/cm2) received irradiation three times a week, on alternate days for five, 14 and 21 days, according to the time of biopsy. ADSC-treated groups received one to three applications of the cells in a total volume of 1000 μL starting soon after the surgical debridement of the burn. Photographic monitoring was carried out at 5, 14 and 21 days after the beginning of the experiment to assess the degree of lesion contraction. Macroscopic, morphometric and histopathological analyzes were performed., Results: We showed significant re-epithelialization as well as an improvement in the healing process in the ADSC+, LLLT and ADSC+LLLT groups. We observed effects in the reduction of the inflammatory phase, increase in angiogenesis, decrease in oedema, greater collagen deposition, and better organization of the extracellular matrix compared to the other treatments. Moreover, the immunomagnetic separation of ADSC cells through the expression of the CD49d protein proved to be a useful means to obtain a more homogeneous population of cells with a role in tissue regeneration compared to the ADSC- and CULT groups., Conclusion: In conclusion, the association of ADSC+ with LLLT was effective in accelerating the burn repair process, stimulating cell proliferation and formation of more normal skin tissue., Competing Interests: Declaration of Competing Interest M.R. has received research grants through National Council for Scientific and Technological Development (CNPq) scholarship from Brazil., (Copyright © 2023 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection.
- Author
-
Osmanoglu Ö, Gupta SK, Almasi A, Yagci S, Srivastava M, Araujo GHM, Nagy Z, Balkenhol J, and Dandekar T
- Subjects
- Humans, SARS-CoV-2, Critical Care, Aminopyridines, Oxazines, Pyridines, COVID-19
- Abstract
Introduction: Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear., Methods: We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved., Results: Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients., Discussion: Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2023 Osmanoglu, Gupta, Almasi, Yagci, Srivastava, Araujo, Nagy, Balkenhol and Dandekar.)
- Published
- 2023
- Full Text
- View/download PDF
5. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice.
- Author
-
Englert M, Aurbach K, Becker IC, Gerber A, Heib T, Wackerbarth LM, Kusch C, Mott K, Araujo GHM, Baig AA, Dütting S, Knaus UG, Stigloher C, Schulze H, Nieswandt B, Pleines I, and Nagy Z
- Subjects
- Animals, Blood Platelets metabolism, Mice, Microtubules metabolism, Tubulin metabolism, Megakaryocytes metabolism, Thrombocytopenia genetics, rhoB GTP-Binding Protein metabolism
- Abstract
Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage., (© 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.