17 results on '"Arafat, Abul"'
Search Results
2. Developments and prospects of additive manufacturing for thermoelectric materials and technologies
- Author
-
Baroutaji, Ahmad, Arjunan, Arun, Robinson, John, Ramadan, Mohamad, Abdelkareem, Mohammad Ali, Vance, Aaron, Arafat, Abul, and Olabi, Abdul-Ghani
- Published
- 2024
- Full Text
- View/download PDF
3. 3D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstruction
- Author
-
Wanniarachchi, Chameekara T., Arjunan, Arun, Baroutaji, Ahmad, Singh, Manpreet, Robinson, John, Vance, Aaron, Appiah, Martin, and Arafat, Abul
- Published
- 2024
- Full Text
- View/download PDF
4. Development of yttrium phosphate based porous microspheres for radioembolisation therapy
- Author
-
Arafat, Abul
- Subjects
R855 Medical technology. Biomedical engineering. Electronics - Abstract
The principal focus for the materials developed in this thesis was for Radioembolisation therapy applications, particularly tailoring phosphate based glasses (PBG's) formulations for the treatment of liver cancer. PBG's have been widely considered in this study due to their fully resorbable, controlled degradation rates and biocompatible properties. Microspheres are gaining attraction as possible advanced materials, owing to their advantages over irregular shaped particles due to its better size, shape, higher surface area and improved flow characteristics. Phosphate glass microspheres containing yttrium oxide (Y2O3) are an area of particular interest in this thesis as Y2O3 has short half-life and been shown to significantly be efficient for improving chemical durability, which in turn is highly beneficial for selective internal radiation therapy (SIRT). Initially, this study investigate the role of yttrium in phosphate-based glasses in the system of 45P2O5-25CaO-(30-x)Na2O-xY2O3 (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation profiles. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses. 31P NMR analysis confirmed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR, Raman and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations comprising 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. The reduction in degradation rate was ascribed to the creation of Y-O-P bonds, which resulted from the octahedral structure of yttrium (YO6) cross-linking phosphate chains, subsequently increasing the chemical durability of the glasses. The ion release profiles also correlated well with degradation profiles. This study also showed successful manufacture of both solid (SGMS) and porous (PGMS) yttrium containing phosphate glass microspheres via flame spheroidisation process within the specific size range 25-45 μm through the modification and optimisation of the manufacturing process. A modified powder feeding and collection system was designed to improve the yield of smaller size range microspheres (in terms of sphericity). Various flow rates of oxygen/acetylene gas, particle to porogen ratio, effect of acid wash, position of the flame were investigated to obtain the maximum yield of smaller sized porous microsphere production. Microspheres generated with higher flow rate (3:3) at 1:0.5 ratio (glass particles: CaCO3) with 5M acetic acid wash were used for the preparation of smaller size porous microspheres based on the findings of the pore distribution, number of pores and sphericity. NMR analysis of SGMS and PGMS indicated that increasing trend of Q1 species (from 35% to 53% for SGMS and 48% to 61% for PGMS) were found with increasing Y2O3 concentration from 0 to 5 mol%, whereas Q2 species decreased from 64 to 47 percent for SGMS and 42 to 29 percent for PGMS. Moreover, a limited amount of Q0 species were found in all of the formulations studied for PGMS. In addition, the dissolution rates of the porous microsphere were higher than the solid microspheres for all glass formulations which were ascribed to the difference in the surface area and porosity between porous and solid microspheres. This study also revealed that the glass formulations remained amorphous with up to 5 mol% Y2O3 addition with further increases in Y2O3 content resulting in significant crystallisation. This phenomenon has been explained by activation energy and crystallisation kinetics of 0 to 5 mol% yttrium containing phosphate based glasses and investigated via Differential Scanning Calorimetry (DSC) using non-isothermal technique at different heating rates (5°C, 10°C, 15°C and 20°C/min). The Moynihan and Kissinger methods were used for the determination of glass transition activation energy (Eg) which decreased from 192 kJ/mol to 118 kJ/mol (Moynihan) and 183 kJ/mol to 113 kJ/mol (Kissinger) with increasing yttrium oxide content. Incorporation of 0 to 5 mol% Y2O3 revealed an approximate decrease of 71 kJ/mol (Ozawa and Augis) for onset crystallisation (Ex) and 26 kJ/mol (Kissinger) for crystallisation peak activation energies (Ec). Avrami index (n) value analysed via Matusita-Sakka equation suggested a one-dimensional crystal growth for the glasses investigated. SEM analysis explored the crystalline morphologies and revealed one-dimensional needle-like crystals. In order to produce porous phosphate microspheres with high yttrium content, a new approach and manufacturing technique was devised in this study in further. In this alternative manufacturing process, different phosphate based glass formulations were mixed with Y2O3 particles at different percentage ratios and fed into the flame. Microspheres of P55-60Y40 (mixture of 60% P55 glass formulations + 40% Y2O3 particles) and P60-60Y40 (mixture of 60% P60 glass formulations + 40% Y2O3 particles) were considered as optimum combinations and ratios as these combinations achieved desired Y2O3 (above 17 mol%) and P2O5 contents (40 mol% or more) confirmed via EDX analysis. XRD analysis revealed that glass-ceramic was formed for high yttrium containing phosphate microspheres instead of glass microspheres. Dissolution profiles of glass-ceramics showed that the higher decrease in particle size was observed for porous glass-ceramic microspheres (PGCMS) in comparison to their respective solid glass-ceramic microspheres (SGCMS). Finally, this study demonstrated successful loading of anticancer drug Doxorubicin (DOX) inside the high yttrium containing porous phosphate glass-ceramic microspheres (P60YPGCMS) via optimisation of drug encapsulation processes. DOX encapsulated microspheres showed a comparatively controlled release behaviour of DOX at low concentrations (2.5 mg/ml) compared to high concentrations (25 mg/ml).
- Published
- 2022
5. Acoustic metamaterials for sound absorption and insulation in buildings
- Author
-
Arjunan, Arun, Baroutaji, Ahmad, Robinson, John, Vance, Aaron, Arafat, Abul, Arjunan, Arun, Baroutaji, Ahmad, Robinson, John, Vance, Aaron, and Arafat, Abul
- Abstract
Despite the emergence of acoustic metamaterials with superior sound absorption and transmission loss, their adoption for building sound insulation has been limited. Sound insulation design in buildings is still informed by the acoustic performance of conventional materials, where the mass law contradicts light weighting when it comes to acoustic design. In any case buildings close to noisy environments such as motorways, railway lines and airports still suffer from significant low frequency noise pollution. Although the limited working bandwidth of acoustic metamaterials is a major issue limiting its application, combining meta-units that interact at various frequencies alongside multi-layer conventional solutions can deliver superior sound insulation in buildings. The review put forwards acoustic metamaterials, specifically emphasising superior sound absorption and transmission/insertion loss as critical properties for effective building sound insulation. The paper reveals a variety of acoustic metamaterials that can be adopted to compliment conventional sound insulation approaches for acoustically efficient building design. The performance of these metamaterials is then explained through their characteristic negative mass density, bulk modulus or repeating or locally resonating microstructure. The review is also extended to air transparent acoustic metamaterials that can be used for sound insulation of building ventilation. Lastly the prospects and challenges regarding the adoption of acoustic metamaterials in building insulation are also discussed. Overall, tuneable, and multifunctional acoustic metamaterials when thoughtfully integrated to building sound insulation can lead to significant acoustic comfort, space-saving and light-weighting.
- Published
- 2024
6. Melt Pool Monitoring and X-ray Computed Tomography-Informed Characterisation of Laser Powder Bed Additively Manufactured Silver–Diamond Composites
- Author
-
Robinson, John, primary, Arafat, Abul, additional, Vance, Aaron, additional, Arjunan, Arun, additional, and Baroutaji, Ahmad, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Melt Pool Monitoring and X-ray Computed Tomography-Informed Characterisation of Laser Powder Bed Additively Manufactured Silver–Diamond Composites
- Author
-
Robinson, John, Arafat, Abul, Vance, Aaron, Arjunan, Arun, Baroutaji, Ahmad, Robinson, John, Arafat, Abul, Vance, Aaron, Arjunan, Arun, and Baroutaji, Ahmad
- Abstract
In this study, silver (Ag) and silver–diamond (Ag-D) composites with varying diamond (D) content are fabricated using laser powder bed fusion (L-PBF) additive manufacturing (AM). The L-PBF process parameters and inert gas flow rate are optimised to control the build environment and the laser energy density at the powder bed to enable the manufacture of Ag-D composites with 0.1%, 0.2% and 0.3% D content. The Ag and D powder morphology are characterised using scanning electron microscopy (SEM). Ag, Ag-D0.1%, Ag-D0.2% and Ag-D0.3% tensile samples are manufactured to assess the resultant density and tensile strength. In-process EOSTATE melt pool monitoring technology is utilised as a comparative tool to assess the density variations. This technique uses in-process melt pool detection to identify variations in the melt pool characteristics and potential defects and/or density deviations. The resultant morphology and associated defect distribution for each of the samples are characterised and reported using X-ray computed tomography (xCT) and 3D visualisation techniques. Young’s modulus, the failure strain and the ultimate tensile strength of the L-PBF Ag and Ag-D are reported. The melt pool monitoring results revealed in-process variations in the build direction, which was confirmed through xCT 3D visualisations. Additionally, the xCT analysis displayed density variations for all the Ag-D composites manufactured. The tensile results revealed that increasing the diamond content reduced Young’s modulus and the ultimate tensile strength.
- Published
- 2023
8. Upcycling Glass Waste into Porous Microspheres for Wastewater Treatment Applications: Efficacy of Dye Removal
- Author
-
Samad, Sabrin A., primary, Arafat, Abul, additional, Lester, Edward, additional, and Ahmed, Ifty, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Adsorption studies and effect of heat treatment on porous glass microspheres
- Author
-
Samad, Sabrin A., primary, Arafat, Abul, additional, Ferrari, Rebecca, additional, Gomes, Rachel L., additional, Lester, Edward, additional, and Ahmed, Ifty, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Yttrium doped phosphate-based glasses: structural and degradation analyses
- Author
-
Arafat, Abul, primary, Samad, Sabrin A., additional, Titman, Jeremy J., additional, Lewis, Andrew L., additional, Barney, Emma R., additional, and Ahmed, Ifty, additional
- Published
- 2020
- Full Text
- View/download PDF
11. Adsorption studies and effect of heat treatment on porous glass microspheres.
- Author
-
Samad, Sabrin A., Arafat, Abul, Ferrari, Rebecca, Gomes, Rachel L., Lester, Edward, and Ahmed, Ifty
- Subjects
- *
HEAT treatment , *ADSORPTION (Chemistry) , *TREATMENT effectiveness , *ELECTROSTATIC interaction , *HYDROGEN bonding , *ANIONIC surfactants , *MICROSPHERES , *COLOR removal in water purification - Abstract
This paper investigates the effect of heat treatment on porous glass microspheres produced via a novel flame spheroidization process, followed by exploring their suitability for dye removal from water. The effect of simple use of smaller porogen (≤5 µm) followed by heat treatment on the overall changes in textural and porosity profiles was quantified. Heat treatment was applied at different temperatures between 510°C and 540°C and cross‐sectional SEM and nitrogen adsorption–desorption confirmed pore sizes had narrowed significantly from microporous (55 ± 8 µm) to mesoporous to macroporous range (≥2 nm) yet retained their interconnectivity. This decrease in pore morphologies led to an increased specific surface area and pore volume (by 51%). In addition, dye separation studies were explored using anionic Acid Red 88 (AR88), utilizing batch and column adsorption experimental processes. This study showed that the heat‐treated microspheres achieved higher dye adsorption rates (i.e., 125 mg/g in batch adsorption studies, while column adsorption studies revealed 153 mg/g and 76 mg/g for flow rates 2.2 ml/min and 0.5 ml/min, respectively) in comparison with the nonheat‐treated microspheres. Furthermore, the dye separation profiles were achieved via electrostatic interaction, hydrogen bonding, and Lewis acid–base interaction, without any internal or external functionalization of the microspheres required. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
12. Thermal and crystallization kinetics of yttrium‐doped phosphate‐based glasses
- Author
-
Arafat, Abul, primary, Samad, Sabrin A., additional, Wadge, Matthew D., additional, Islam, Md Towhidul, additional, Lewis, Andrew L., additional, Barney, Emma R., additional, and Ahmed, Ifty, additional
- Published
- 2019
- Full Text
- View/download PDF
13. Thermal and crystallization kinetics of yttrium‐doped phosphate‐based glasses.
- Author
-
Arafat, Abul, Samad, Sabrin A., Wadge, Matthew D., Islam, Md Towhidul, Lewis, Andrew L., Barney, Emma R., and Ahmed, Ifty
- Subjects
- *
CRYSTALLIZATION kinetics , *CRYSTALLIZATION , *MOLECULAR volume , *CRYSTAL growth , *DIFFERENTIAL scanning calorimetry , *YTTRIUM oxides , *ACTIVATION energy - Abstract
Yttrium‐doped glasses have been utilized for biomedical applications such as radiotherapy, especially for liver cancer treatment. In this paper, the crystallization behavior of phosphate‐based glasses doped with yttrium (in the system 45P2O5–(30 − x) Na2O–25CaO–xY2O3—where x = 0, 1, 3 and 5) have been investigated via Differential Scanning Calorimetry (DSC) using nonisothermal technique at different heating rates (5°C, 10°C, 15°C and 20°C/min). The glass compositions were characterized via EDX, XRD, Density and Molar volume analysis. The Moynihan and Kissinger methods were used for the determination of glass transition activation energy (Eg) which decreased from 192 to 118 kJ/mol (Moynihan) and 183 to 113 kJ/mol (Kissinger) with increasing yttrium oxide content. Incorporation of 0 to 5 mol% Y2O3 revealed an approximate decrease of 71 kJ/mol (Ozawa and Augis) for onset crystallization (Ex) and 26 kJ/mol (Kissinger) for crystallization peak activation energies (Ec). Avrami index (n) value analyzed via Matusita–Sakka equation suggested a one‐dimensional crystal growth for the glasses investigated. SEM analysis explored the crystalline morphologies and revealed one‐dimensional needle‐like crystals. Overall, it was found that these glass formulations remained amorphous with up to 5 mol% Y2O3 addition with further increases in Y2O3 content resulting in significant crystallization. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
14. Characterization of Scaffold Prepared by Blending Nanobioactive Glass and Graphene Oxide-Gelatin Hydrogel Solutions for Bone Tissue Engineering
- Author
-
Samad, Sabrin A., primary, Arafat, Abul A., additional, Gafur, M. A., additional, and Chowdhury, A. M. Sarwaruddin, additional
- Published
- 2015
- Full Text
- View/download PDF
15. Development of yttrium phosphate based porous microspheres for radioembolisation therapy
- Author
-
Arafat, Abul
- Abstract
The principal focus for the materials developed in this thesis was for Radioembolisation therapy applications, particularly tailoring phosphate based glasses (PBG’s) formulations for the treatment of liver cancer. PBG’s have been widely considered in this study due to their fully resorbable, controlled degradation rates and biocompatible properties. Microspheres are gaining attraction as possible advanced materials, owing to their advantages over irregular shaped particles due to its better size, shape, higher surface area and improved flow characteristics. Phosphate glass microspheres containing yttrium oxide (Y2O3) are an area of particular interest in this thesis as Y2O3 has short half-life and been shown to significantly be efficient for improving chemical durability, which in turn is highly beneficial for selective internal radiation therapy (SIRT).\ud \ud Initially, this study investigate the role of yttrium in phosphate-based glasses in the system of 45P2O5–25CaO–(30-x)Na2O–xY2O3 (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation profiles. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses. 31P NMR analysis confirmed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR, Raman and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations comprising 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. The reduction in degradation rate was ascribed to the creation of Y-O-P bonds, which resulted from the octahedral structure of yttrium (YO6) cross-linking phosphate chains, subsequently increasing the chemical durability of the glasses. The ion release profiles also correlated well with degradation profiles.\ud \ud This study also showed successful manufacture of both solid (SGMS) and porous (PGMS) yttrium containing phosphate glass microspheres via flame spheroidisation process within the specific size range 25-45 μm through the modification and optimisation of the manufacturing process. A modified powder feeding and collection system was designed to improve the yield of smaller size range microspheres (in terms of sphericity). Various flow rates of oxygen/acetylene gas, particle to porogen ratio, effect of acid wash, position of the flame were investigated to obtain the maximum yield of smaller sized porous microsphere production. Microspheres generated with higher flow rate (3:3) at 1:0.5 ratio (glass particles: CaCO3) with 5M acetic acid wash were used for the preparation of smaller size porous microspheres based on the findings of the pore distribution, number of pores and sphericity. NMR analysis of SGMS and PGMS indicated that increasing trend of Q1 species (from 35% to 53% for SGMS and 48% to 61% for PGMS) were found with increasing Y2O3 concentration from 0 to 5 mol%, whereas Q2 species decreased from 64 to 47 percent for SGMS and 42 to 29 percent for PGMS. Moreover, a limited amount of Q0 species were found in all of the formulations studied for PGMS. In addition, the dissolution rates of the porous microsphere were higher than the solid microspheres for all glass formulations which were ascribed to the difference in the surface area and porosity between porous and solid microspheres.\ud \ud This study also revealed that the glass formulations remained amorphous with up to 5 mol% Y2O3 addition with further increases in Y2O3 content resulting in significant crystallisation. This phenomenon has been explained by activation energy and crystallisation kinetics of 0 to 5 mol% yttrium containing phosphate based glasses and investigated via Differential Scanning Calorimetry (DSC) using non-isothermal technique at different heating rates (5°C, 10°C, 15°C and 20°C/min). The Moynihan and Kissinger methods were used for the determination of glass transition activation energy (Eg) which decreased from 192 kJ/mol to 118 kJ/mol (Moynihan) and 183 kJ/mol to 113 kJ/mol (Kissinger) with increasing yttrium oxide content. Incorporation of 0 to 5 mol% Y2O3 revealed an approximate decrease of 71 kJ/mol (Ozawa and Augis) for onset crystallisation (Ex) and 26 kJ/mol (Kissinger) for crystallisation peak activation energies (Ec). Avrami index (n) value analysed via Matusita-Sakka equation suggested a one-dimensional crystal growth for the glasses investigated. SEM analysis explored the crystalline morphologies and revealed one-dimensional needle-like crystals.\ud \ud In order to produce porous phosphate microspheres with high yttrium content, a new approach and manufacturing technique was devised in this study in further. In this alternative manufacturing process, different phosphate based glass formulations were mixed with Y2O3 particles at different percentage ratios and fed into the flame. Microspheres of P55-60Y40 (mixture of 60% P55 glass formulations + 40% Y2O3 particles) and P60-60Y40 (mixture of 60% P60 glass formulations + 40% Y2O3 particles) were considered as optimum combinations and ratios as these combinations achieved desired Y2O3 (above 17 mol%) and P2O5 contents (40 mol% or more) confirmed via EDX analysis. XRD analysis revealed that glass-ceramic was formed for high yttrium containing phosphate microspheres instead of glass microspheres. Dissolution profiles of glass-ceramics showed that the higher decrease in particle size was observed for porous glass-ceramic microspheres (PGCMS) in comparison to their respective solid glass-ceramic microspheres (SGCMS).\ud \ud Finally, this study demonstrated successful loading of anticancer drug Doxorubicin (DOX) inside the high yttrium containing porous phosphate glass-ceramic microspheres (P60YPGCMS) via optimisation of drug encapsulation processes. DOX encapsulated microspheres showed a comparatively controlled release behaviour of DOX at low concentrations (2.5 mg/ml) compared to high concentrations (25 mg/ml).
16. Development of yttrium phosphate based porous microspheres for radioembolisation therapy
- Author
-
Arafat, Abul and Arafat, Abul
- Abstract
The principal focus for the materials developed in this thesis was for Radioembolisation therapy applications, particularly tailoring phosphate based glasses (PBG’s) formulations for the treatment of liver cancer. PBG’s have been widely considered in this study due to their fully resorbable, controlled degradation rates and biocompatible properties. Microspheres are gaining attraction as possible advanced materials, owing to their advantages over irregular shaped particles due to its better size, shape, higher surface area and improved flow characteristics. Phosphate glass microspheres containing yttrium oxide (Y2O3) are an area of particular interest in this thesis as Y2O3 has short half-life and been shown to significantly be efficient for improving chemical durability, which in turn is highly beneficial for selective internal radiation therapy (SIRT). Initially, this study investigate the role of yttrium in phosphate-based glasses in the system of 45P2O5–25CaO–(30-x)Na2O–xY2O3 (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation profiles. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses. 31P NMR analysis confirmed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR, Raman and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations comprising 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS
17. Yttrium-Enriched Phosphate Glass-Ceramic Microspheres for Bone Cancer Radiotherapy Treatment.
- Author
-
Milborne B, Arjuna A, Islam MT, Arafat A, Layfield R, Thompson A, and Ahmed I
- Abstract
This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively. Concurrently, a proportional decrease in the phosphate, calcium, and magnesium content was observed. Further EDX mapping showed a homogeneous distribution of all elements throughout the microspheres, indicating uniform composition. X-ray diffraction profiles confirmed the amorphous nature of the starting P40 glass microspheres, while yttrium-containing microspheres exhibited crystalline peaks corresponding to cubic and hexagonal Y
2 O3 and Y(PO4 ) phases, indicating the formation of glass-ceramic materials. Ion release studies revealed the reduction of all ion release rates from yttrium-containing microspheres compared with P40 microspheres. The pH of the surrounding media was also stable at approximately pH 7 over time, highlighting the chemical durability of the microspheres' produced. In vitro cytocompatibility studies demonstrated that both indirect and direct cell culture methods showed favorable cellular responses. The metabolic and alkaline phosphatase activity assays indicated comparable or enhanced cell responses on yttrium-containing microspheres compared to the initial P40 glass microspheres. Overall, these findings showed that significantly high yttrium-content phosphate glass-ceramic microspheres could be produced as versatile biomaterials offering potential applications for combined bone cancer radiotherapy treatment and bone regeneration., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.