1. Compensation engineering for uniform n-type silicon ingots
- Author
-
Antoine Thomas, Bastien Dehestru, Mustapha Lemiti, Roland Einhaus, Erwann Fourmond, Maxime Forster, Andres Cuevas, INL - Photovoltaïque (INL - PV), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Apollon Solar (Apollon Solar), Apollon Solar, Australian National University (ANU), and Australian National University - Department of engineering (ANU)
- Subjects
Materials science ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Compensation (engineering) ,Monocrystalline silicon ,0103 physical sciences ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Ingot ,Diffusion (business) ,Gallium ,Boron ,010302 applied physics ,Renewable Energy, Sustainability and the Environment ,business.industry ,Doping ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; This paper addresses a major issue related to the use of upgraded-metallurgical grade silicon for n-type solar cells. We show that n-type silicon ingots, grown from silicon feedstock containing both boron and phosphorus, display a vertical net doping variation which is incompatible with high-yield production of high-efficiency solar cells. As a solution, we propose to use compensation engineering, by means of gallium co-doping, and demonstrate its potential to control the net doping along the ingot height. The resulting material exhibits high minority carrier diffusion length gratefully to compensation but degrades upon illumination due to the activation of the boron-oxygen defect. This latter degradation remains an important though not unsurmountable challenge for making high-efficiency n-type solar cells with upgraded-metallurgical grade silicon.
- Published
- 2013
- Full Text
- View/download PDF