1. Role of NADPH Oxidases in Liver Fibrosis
- Author
-
Paik, Yong-Han, Kim, Jonghwa, Aoyama, Tomonori, De Minicis, Samuele, Bataller, Ramon, and Brenner, David A
- Subjects
Biochemistry and Cell Biology ,Biomedical and Clinical Sciences ,Biological Sciences ,Substance Misuse ,Liver Disease ,Chronic Liver Disease and Cirrhosis ,Alcoholism ,Alcohol Use and Health ,Digestive Diseases ,Aetiology ,2.1 Biological and endogenous factors ,Oral and gastrointestinal ,Good Health and Well Being ,Angiotensin II ,Hepatic Stellate Cells ,Humans ,Liver Cirrhosis ,NADPH Oxidases ,Oxidative Stress ,Reactive Oxygen Species ,Signal Transduction ,Medical Biochemistry and Metabolomics ,Pharmacology and Pharmaceutical Sciences ,Biochemistry & Molecular Biology ,Biochemistry and cell biology ,Medical biochemistry and metabolomics - Abstract
SignificanceHepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins.Recent advancesIn the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease.Critical issuesAlthough there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown.Future directionsA better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antio
- Published
- 2014