Thierry Barisien, David Beljonne, Antonios M. Alvertis, Bartomeu Monserrat, Claudio Quarti, Alex W. Chin, Akshay Rao, Laurent Legrand, Raj Pandya, Andrew J. Musser, Cavendish Laboratory, University of Cambridge [UK] (CAM), University of Mons [Belgium] (UMONS), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Photonique et cohérence de spin (INSP-E12), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Materials Science and Metallurgy [Cambridge University] (DMSM), Cornell University [New York], Fonds De La Recherche Scientifique - FNRS, EP/L015552/1, Engineering and Physical Sciences Research Council, ANR-19-CE24-0028, Agence National de la Recherce, Alvertis, Antonios [0000-0001-5916-3419], Pandya, Raj [0000-0003-1108-9322], Monserrat Sanchez, Bartomeu [0000-0002-4233-4071], Rao, Akshay [0000-0003-0320-2962], Apollo - University of Cambridge Repository, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA), and ANR-19-CE24-0028,ACCEPT,AnharmoniC and exChangE interactions in Phonon specTra(2019)
International audience; Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications; however, progress toward this end has been impeded by the lack of a first principles approach that quantifies light–matter interactions in these systems, which would allow the formulation of molecular design rules. Here, we present a theoretical framework that combines first principles calculations for excitons with classical electrodynamics in order to quantify light–matter interactions. We exemplify our approach by studying variants of the conjugated polymer polydiacetylene, and we show that a large polymer conjugation length is critical toward strong exciton–photon coupling, hence underlying the importance of pure structures without static disorder. By comparing to our experimental reflectivity measurements, we show that the coupling of excitons to vibrations, manifested by phonon side bands in the absorption, has a strong impact on the magnitude of light–matter coupling over a range of frequencies. Our approach opens the way toward a deeper understanding of polaritons in organic materials, and we highlight that a quantitatively accurate calculation of the exciton–photon interaction would require accounting for all sources of disorder self-consistently.