The aim of this review is to analyse the different existing technologies for gait rehabilitation, focusing mainly in robotic devices. Those robots help the patient to recover a lost function due to neurological gait disorders, accidents or after injury. Besides, they facilitate the identification of normal and abnormal features by registering muscle activity providing the doctor important data where he can observe the evolution of the patient.A deep literature review was realized using selected keywords considering not only the most common medical and engineering databases, but also other available sources that provide information on commercial and scientific gait rehabilitation devices. The founded literature for this review corresponds to control techniques for gait rehabilitation robots, since the early seventies to the present year.Different control strategies for gait analysis in rehabilitation devices have been developed and implemented such as position control, force and impedance control, haptic simulation, and control of EMG signals. These control techniques are used to analyze the force of the patient during therapy, compensating it with the force generated by the mechanism in the rehabilitation device. It is observed that the largest number of studies reported, focuses on the impedance control technique. Leading to include new control techniques and validate them using the necessary protocols with ill patients, obtaining reliable results that allows a progressive and active rehabilitation.With this exhaustive review, we can conclude that the degree of complexity of the rehabilitation device influences in short and long-term therapeutic results since the movements become more controlled. However, there is still a lot of work in the sense of motion control in order to perform trajectories that are more alike the natural movements of humans. There are many control techniques in other areas, which seek to improve the performance of the process. These techniques may possibly be applicable in gait rehabilitation devices, obtaining controllers that are more efficient and that adapts to different people and the necessities that entail every disease. Implications for Rehabilitation Rehabilitation helps people to improve the activities of their daily life, allowing them to observe their progress in the functional abilities as the months pass by with intensive and repetitive therapies. There is a mobility issue when the patient needs to move to the hospital or to the laboratory, which is not always feasible. For overcoming it, patients use the equipment at home to perform their daily therapy. However, they need the sufficient knowledge about its operation, also about the therapeutic movements, the therapy duration and the movement speed. Besides, is necessary to place the equipment in a proper and lively environment that helps to forget or reduce pain while the patient moves his joints progressively. The purpose of robotic rehabilitation devices is to generate repetitive and progressive movements, according to the motor disability. There are training trajectories to follow, which motivate patients to generate active movements. The benefits of robotic rehabilitation depend on the ability of each patient to adapt to the speed and load variations generated by the device, improving and reinforcing motor functions in therapy, especially in patients with advanced disabilities in early rehabilitation. Multi-joint rehabilitation devices are more effective than single-joint rehabilitation devices because they involve a higher number of muscles in the therapy. The greater the number of degrees of freedom (DoF) of the device, it cushions its effect in the patient because the inertia is reduced and higher torques are generated. The assistive technological devices allows to explore different rehabilitation techniques that motivate the patient in therapy, increasing appropriately the energy and pressure in the blood which is reflected in gradually recovering his ability to walk.