47 results on '"Antonczak S"'
Search Results
2. Acid-catalysed oxidative ring-opening of epoxide by DMSO. Theoretical investigation of the effect of acid catalysts and substituents
- Author
-
Antoniotti, S., Antonczak, S., and Golebiowski, J.
- Published
- 2004
- Full Text
- View/download PDF
3. An initio analysis of water-assisted reaction mechanisms in amide hydrolysis
- Author
-
Antonczak, S., Ruiz-Lopez, M.F., and Rivail, J.L.
- Subjects
Amides -- Research ,Hydrolysis -- Analysis ,Chemical reactions -- Analysis ,Chemistry - Abstract
Analysis of the role of electrostatic interactions in the amide hydrolysis reaction shows the assistance of an ancillary water molecule in formamide hydrolysis. A neutral reaction and an acid-catalyzed reaction are studied to obtain a mechanism. Assisted reaction involves a hydrogen bonded reaction intermediate between water and formamide and is due to a cooperative effect in the water dimer. H-acceptor in the water dimer favors the pyramidalization of the nitrogen atom to activate carbon nucleophilic attack.
- Published
- 1994
4. Theoretical interpretation of the observed diastereoisomeric differentiation of cis- and trans-2-methylcyclohexanol in the gas phase mediated by scandium(I)
- Author
-
Antonczak, S, Marchandé, N, Cabrol-Bass, D, and Géribaldi, S
- Published
- 2003
- Full Text
- View/download PDF
5. The anatomy of mammalian sweet taste receptors
- Author
-
Chéron, J. B., Golebiowski, J., Antonczak, S., Sebastien Fiorucci, Institut de Chimie de Nice (ICN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM]Chemical Sciences ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,ComputingMilieux_MISCELLANEOUS ,[CHIM.CHEM]Chemical Sciences/Cheminformatics - Abstract
International audience
- Published
- 2017
- Full Text
- View/download PDF
6. Chimie théorique : les défis d'une filière de formation à faibles effectifs
- Author
-
Poteau, Romuald, Chambaud, Gilberte, Antonczak, S., Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Pharmacochimie moléculaire et structurale, Institut des sciences du Médicament -Toxicologie - Chimie - Environnement (IFR71), Institut de Recherche pour le Développement (IRD)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets ( LPCNO ), Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Modélisation et Simulation Multi Echelle ( MSME ), Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Université Paris-Est Marne-la-Vallée ( UPEM ), Institut des sciences du Médicament -Toxicologie - Chimie - Environnement ( IFR71 ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Chambaud, Gilberte
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,Enseignement supérieur - Abstract
International audience; En cette année où le prix Nobel de Chimie a récompensé trois éminents chimistes théoriciens, dont Martin Karplus de l'Université de Strasbourg, ce champ disciplinaire, la Chimie théorique, vit un paradoxe. Comme l'illustrent plusieurs articles de ce numéro spécial de l'Actualité Chimique, elle reste un point central dans le développement de nouvelles connaissances fondamentales et apporte un éclairage précieux sur de nombreux travaux expérimentaux ; elle délivre représentation et interprétation des phénomènes à l'échelle moléculaire ; elle s'adapte à la puissance des outils numériques actuels ; des développements méthodologiques permanents permettent de repousser les limites de son applicabilité, aussi bien en termes de dimension des systèmes étudiés que de leur complexité physico-chimique. Il n'est pratiquement pas de structure de recherche, académique ou industrielle, qui n'ait en son sein une équipe de modélisation-simulation. Les besoins en experts qualifiés en la matière ne cessent de progresser, compte tenu du nombre croissant de sujets de recherche requérant d'une part de savoir utiliser avec recul et esprit critique les nombreux logiciels conviviaux et robustes disponibles et d'autre part de savoir construire des modèles théoriques capturant l'essence de la complexité expérimentale.
- Published
- 2014
7. Bientôt dans votre amphithéâtre, la chimie fera son cinéma. De la bonne utilisation des ressources informatiques pour l’enseignement : visualisation moléculaire, illustration de processus chimiques et de modèles physiques
- Author
-
Chavent, M., Baaden, M., Hénon, E., Antonczak, S., Laboratoire de biochimie théorique [Paris] (LBT (UPR_9080)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS), Pharmacochimie moléculaire et structurale, Institut des sciences du Médicament -Toxicologie - Chimie - Environnement (IFR71), Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biochimie théorique [Paris] (LBT), Université Paris Diderot - Paris 7 (UPD7) - Centre National de la Recherche Scientifique (CNRS), Institut de biologie physico-chimique (IBPC), Institut National de la Santé et de la Recherche Médicale (INSERM) - Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD) - Université Paris Descartes - Paris 5 (UPD5) - Institut National de la Santé et de la Recherche Médicale (INSERM) - Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP) - Centre National de la Recherche Scientifique (CNRS) - Institut de Recherche pour le Développement (IRD) - Université Paris Descartes - Paris 5 (UPD5) - Université Paris Descartes - Paris 5 (UPD5) - Institut National de la Santé et de la Recherche Médicale (INSERM) - Centre National de la Recherche Scientifique (CNRS), Laboratoire de biochimie théorique [Paris] ( LBT ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie Moléculaire de Reims - UMR 7312 ( ICMR ), SFR Condorcet, Université de Reims Champagne-Ardenne ( URCA ) -Université de Picardie Jules Verne ( UPJV ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Reims Champagne-Ardenne ( URCA ) -Université de Picardie Jules Verne ( UPJV ) -Centre National de la Recherche Scientifique ( CNRS ) -SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne ( URCA ) -Université de Picardie Jules Verne ( UPJV ) -Université de Reims Champagne-Ardenne ( URCA ) -Université de Picardie Jules Verne ( UPJV ) -Université de Reims Champagne-Ardenne ( URCA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences du Médicament -Toxicologie - Chimie - Environnement ( IFR71 ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Université Paris Diderot - Paris 7 (UPD7)-Institut de biologie physico-chimique (IBPC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire de Reims - UMR 7312 (ICMR), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Paris Descartes - Paris 5 (UPD5)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,enseignement ,[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,processeur graphique (GPU) ,contenu pédagogique numérique ,Visualisation moléculaire ,MIEC-JIREC 2011 ,chimie théorique ,ComputingMilieux_MISCELLANEOUS - Abstract
Enseignement et formation; National audience; La chimie traite du monde moléculaire, abstrait à notre échelle. La représentation d'un objet chimique, du simple trait à la réalité augmentée, est devenue un outil pédagogique essentiel. Ces illustrations statiques ou dynamiques, indispensables en recherche, s'appuient sur des données expérimentales ou issues de calculs. Elles forment un pont idéal entre les connaissances accumulées en recherche et un contenu pédagogique, donnant l'occasion de mettre en lumière de manière efficace, au-delà des objets eux-mêmes, les modèles physiques qui gouvernent leur comportement. L'intégration de toutes ces ressources numériques au sein de l'enseignement supérieur est importante dès la première année. Au-delà de la simple mise à disposition, l'interaction encadrée de l'étudiant avec ces ressources et l'utilisation, même basique, des outils de calcul qui les ont générées, renforcent la compréhension des notions apprises et l'intérêt de l'étudiant pour la discipline.
- Published
- 2012
8. Dynamic simulation of interaction between HIV-1 RNA loops and PNA cased cyclic molecules
- Author
-
Terreux, R., Antonczak, S., Cabrol-Bass, D., Patino, N., Condomr, Xxxx, and Deleage, Gilbert
- Subjects
[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology - Abstract
xxx
- Published
- 2000
9. ChemInform Abstract: Ab initio Analysis of Water-Assisted Reaction Mechanisms in Amide Hydrolysis
- Author
-
ANTONCZAK, S., primary, RUIZ-LOPEZ, M. F., additional, and RIVAIL, J. L., additional
- Published
- 2010
- Full Text
- View/download PDF
10. ChemInform Abstract: Water-Assisted Reactions in Aqueous Solution.
- Author
-
RIVAIL, J.-L., primary, ANTONCZAK, S., additional, CHIPOT, C., additional, RUIZ-LOPEZ, M. F., additional, and GORB, L. G., additional
- Published
- 2010
- Full Text
- View/download PDF
11. ChemInform Abstract: Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.
- Author
-
GISDAKIS, P., primary, ANTONCZAK, S., additional, KOESTLMEIER, S., additional, HERRMANN, W. A., additional, and ROESCH, N., additional
- Published
- 2010
- Full Text
- View/download PDF
12. Assisted mechanism in peptide hydrolysis catalyzed by thermolysine: A DFT study
- Author
-
Antonczak, S., primary, Ruiz-López, M. F., additional, and Rivail, J.-L., additional
- Published
- 1995
- Full Text
- View/download PDF
13. A three-dimensional construction of the active site (region 507-749) of human neutral endopeptidase (EC.3.4.24.11).
- Author
-
Tiraboschi, G, Jullian, N, Thery, V, Antonczak, S, Fournie-Zaluski, MC, and Roques, BP
- Published
- 1999
- Full Text
- View/download PDF
14. Thermochemistry of Oxygen Transfer between Rhenium and Phosphine Complexes. A Density Functional Study
- Author
-
Gisdakis, P., Antonczak, S., and Rosch, N.
- Abstract
The thermochemistry of the oxygen transfer from Cp*ReO
3 to PPh3 , recently studied experimentally, has been investigated by density functional (DF) calculations. Both gradient corrected (BP86) and hybrid (B3LYP) DF methods were employed. The goal of the study was twofold. First, we evaluate the accuracy of the computational methodology for describing a transition metal oxygen multiple bond, and we check some assumptions that were made to establish the experimental thermochemistry of this complex transfer reaction. In this way we validate a computational strategy which we apply in the second part to calculate the Re−O bond dissociation energies in the complexes LReO3 , L = CH3 , C6 H5 , Cl, F, OH, and NH2 . A high level of calculation on appropriate models, including enthalpy corrections and solvent effects, is required to compute enthalpy values of all reaction steps in good agreement with experiment. The B3LYP approach with flexible basis sets leads to Re−O bond energies of analogous complexes LReO3 (L = Cp, Cp*, and CH3 ) of 109, 113, and 153 kcal/mol, respectively; the value calculated for L = Cp* agrees very well with the experimentally derived value of 116 kcal/mol. The structure of the complex with L = Cp is similar to that with L = Cp*, but the Re−O bond is slightly more covalent. Overall, oxygen abstraction by PPh3 including formation of the dimer (LReO2 )2 is exothermic for L = Cp* and Cp, but endothermic for L = CH3 . The experimentally not characterized dimer (LReO)2 (μ-O)2 with L = CH3 is significantly more stable with respect to its monomers than the analogous dimer with L = Cp. This may be due to a direct Re−Re interaction since the metal−metal distance of (CH3 ReO)2 (μ-O)2 is calculated to be 2.59 Å, but is 3.14 Å for (CpReO)2 (μ-O)2 . The strength of the P−O bond of OPPh3 is calculated to be 124 kcal/mol, which is somewhat smaller than the most favorable experimental value of 133 kcal/mol.- Published
- 1999
15. ChemInform Abstract: Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.
- Author
-
GISDAKIS, P., ANTONCZAK, S., KOESTLMEIER, S., HERRMANN, W. A., and ROESCH, N.
- Published
- 1998
- Full Text
- View/download PDF
16. ChemInform Abstract: Water-Assisted Reactions in Aqueous Solution.
- Author
-
RIVAIL, J.-L., ANTONCZAK, S., CHIPOT, C., RUIZ-LOPEZ, M. F., and GORB, L. G.
- Published
- 1995
- Full Text
- View/download PDF
17. ChemInform Abstract: Ab initio Analysis of Water-Assisted Reaction Mechanisms in Amide Hydrolysis.
- Author
-
ANTONCZAK, S., RUIZ-LOPEZ, M. F., and RIVAIL, J. L.
- Published
- 1994
- Full Text
- View/download PDF
18. Exploring Dihydroflavonol-4-Reductase Reactivity and Selectivity by QM/MM-MD Simulations.
- Author
-
Diharce J, Bignon E, Fiorucci S, and Antonczak S
- Subjects
- Alcohol Oxidoreductases chemistry, Biocatalysis, Flavonoids chemistry, Molecular Conformation, Quercetin biosynthesis, Quercetin chemistry, Substrate Specificity, Vitis enzymology, Alcohol Oxidoreductases metabolism, Flavonoids biosynthesis, Molecular Dynamics Simulation, Quantum Theory, Quercetin analogs & derivatives
- Abstract
Flavonoids are secondary metabolites ubiquitously found in plants. Their antioxidant properties make them highly interesting natural compounds for use in pharmacology. Therefore, unravelling the mechanisms of flavonoid biosynthesis is an important challenge. Among all the enzymes involved in this biosynthetic pathway, dihydroflavonol-4-reductase (DFR) plays a key role in the production of anthocyanins and proanthocyanidins. Here, we provide new information on the mechanism of action of this enzyme by using QM/MM-MD simulations applied to both dihydroquercetin (DHQ) and dihydrokaempferol (DHK) substrates. The consideration of these very similar compounds shed light on the major role played by the enzyme on the stabilization of the transition state but also on the activation of the substrate before the reaction through near-attack conformer effects., (© 2021 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
19. Novel scaffold of natural compound eliciting sweet taste revealed by machine learning.
- Author
-
Bouysset C, Belloir C, Antonczak S, Briand L, and Fiorucci S
- Subjects
- Humans, Receptors, G-Protein-Coupled agonists, Receptors, G-Protein-Coupled metabolism, Machine Learning, Sweetening Agents analysis, Taste physiology
- Abstract
Sugar replacement is still an active issue in the food industry. The use of structure-taste relationships remains one of the most rational strategy to expand the chemical space associated to sweet taste. A new machine learning model has been setup based on an update of the SweetenersDB and on open-source molecular features. It has been implemented on a freely accessible webserver. Cellular functional assays show that the sweet taste receptor is activated in vitro by a new scaffold of natural compounds identified by the in silico protocol. The newly identified sweetener belongs to the lignan chemical family and opens a new chemical space to explore., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
20. Corrigendum: Conserved Residues Control the T1R3-Specific Allosteric Signaling Pathway of the Mammalian Sweet-Taste Receptor.
- Author
-
Chéron JB, Soohoo A, Wang Y, Golebiowski J, Antonczak S, Jiang P, and Fiorucci S
- Published
- 2019
- Full Text
- View/download PDF
21. Allosteric Modulation Mechanism of the mGluR 5 Transmembrane Domain.
- Author
-
Cong X, Chéron JB, Golebiowski J, Antonczak S, and Fiorucci S
- Subjects
- Allosteric Regulation, Humans, Mutation, Protein Domains, Receptor, Metabotropic Glutamate 5 genetics, Cell Membrane metabolism, Molecular Dynamics Simulation, Receptor, Metabotropic Glutamate 5 chemistry, Receptor, Metabotropic Glutamate 5 metabolism
- Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor type 5 (mGluR
5 ), a prototypical class C G protein-coupled receptor (GPCR), have shown therapeutic potential for various neurological disorders. Understanding the allosteric activation mechanism is essential for the rational design of mGluR5 PAMs. We studied the actions of positive and negative allosteric modulators within the transmembrane domain of mGluR5 , using enhance-sampling all-atom molecular dynamics simulations. We found dual binding modes of the PAM, associated with distinct shapes of the allosteric pocket. The negative allosteric modulators, in contrast, showed only one binding mode. The simulations revealed the mechanism by which the PAM activated the receptor, in the absence of the orthosteric agonist (the so-called allosteric agonism). The mechanism relied on dynamic communications between amino-acid motifs that are highly conserved across class C GPCRs. The findings may guide structure-based design and virtual screening of allosteric modulators for mGluR5 as well as for other class C GPCRs.- Published
- 2019
- Full Text
- View/download PDF
22. Conserved Residues Control the T1R3-Specific Allosteric Signaling Pathway of the Mammalian Sweet-Taste Receptor.
- Author
-
Chéron JB, Soohoo A, Wang Y, Golebiowski J, Antonczak S, Jiang P, and Fiorucci S
- Subjects
- Cells, Cultured, Cyclamates chemistry, Cyclamates pharmacology, HEK293 Cells, Humans, Ligands, Molecular Dynamics Simulation, Mutagenesis, Site-Directed, Receptors, G-Protein-Coupled chemistry, Receptors, G-Protein-Coupled metabolism, Allosteric Regulation genetics, Receptors, G-Protein-Coupled genetics, Signal Transduction genetics
- Abstract
Mammalian sensory systems detect sweet taste through the activation of a single heteromeric T1R2/T1R3 receptor belonging to class C G-protein-coupled receptors. Allosteric ligands are known to interact within the transmembrane domain, yet a complete view of receptor activation remains elusive. By combining site-directed mutagenesis with computational modeling, we investigate the structure and dynamics of the allosteric binding pocket of the T1R3 sweet-taste receptor in its apo form, and in the presence of an allosteric ligand, cyclamate. A novel positively charged residue at the extracellular loop 2 is shown to interact with the ligand. Molecular dynamics simulations capture significant differences in the behavior of a network of conserved residues with and without cyclamate, although they do not directly interact with the allosteric ligand. Structural models show that they adopt alternate conformations, associated with a conformational change in the transmembrane region. Site-directed mutagenesis confirms that these residues are unequivocally involved in the receptor function and the allosteric signaling mechanism of the sweet-taste receptor. Similar to a large portion of the transmembrane domain, they are highly conserved among mammals, suggesting an activation mechanism that is evolutionarily conserved. This work provides a structural basis for describing the dynamics of the receptor, and for the rational design of new sweet-taste modulators., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
23. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.
- Author
-
Chéron JB, Zacharias M, Antonczak S, and Fiorucci S
- Subjects
- Databases, Protein, Protein Binding, Molecular Docking Simulation, Proteins chemistry, Thermodynamics
- Abstract
Determining the protein-protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein-protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein-protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
24. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.
- Author
-
Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard JL, and Jullien F
- Subjects
- Alkyl and Aryl Transferases genetics, Alkyl and Aryl Transferases metabolism, Amino Acid Sequence, Camphanes chemistry, Camphor chemistry, Catalytic Domain, Cloning, Molecular, Flowers enzymology, Intramolecular Lyases genetics, Models, Molecular, Phylogeny, Plant Leaves enzymology, Plant Proteins genetics, Salvia officinalis enzymology, Structure-Activity Relationship, Intramolecular Lyases metabolism, Lavandula enzymology, Oils, Volatile chemistry, Plant Oils chemistry, Plant Proteins metabolism
- Abstract
Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221., (Copyright © 2017. Published by Elsevier Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
25. Sweetness prediction of natural compounds.
- Author
-
Chéron JB, Casciuc I, Golebiowski J, Antonczak S, and Fiorucci S
- Subjects
- Biological Products, Humans, Structure-Activity Relationship, Sweetening Agents chemistry
- Abstract
Based on the most exhaustive database of sweeteners with known sweetness values, a new quantitative structure-activity relationship model for sweetness prediction has been set up. Analysis of the physico-chemical properties of sweeteners in the database indicates that the structure of most potent sweeteners combines a hydrophobic scaffold functionalized by a limited number of hydrogen bond sites (less than 4 hydrogen bond donors and 10 acceptors), with a moderate molecular weight ranging from 350 to 450g·mol
-1 . Prediction of sweetness, bitterness and toxicity properties of the largest database of natural compounds have been performed. In silico screening reveals that the majority of the predicted natural intense sweeteners comprise saponin or stevioside scaffolds. The model highlights that their sweetness potency is comparable to known natural sweeteners. The identified compounds provide a rational basis to initiate the design and chemosensory analysis of new low-calorie sweeteners., (Copyright © 2016 Elsevier Ltd. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
26. The anatomy of mammalian sweet taste receptors.
- Author
-
Chéron JB, Golebiowski J, Antonczak S, and Fiorucci S
- Subjects
- Amino Acid Sequence, Binding Sites, Gene Expression, Humans, Ligands, Models, Molecular, Point Mutation, Protein Binding, Protein Interaction Domains and Motifs, Protein Multimerization, Protein Structure, Secondary, Receptor, Metabotropic Glutamate 5 genetics, Receptors, G-Protein-Coupled genetics, Receptors, Metabotropic Glutamate genetics, Sequence Alignment, Structural Homology, Protein, Taste physiology, Receptor, Metabotropic Glutamate 5 chemistry, Receptors, G-Protein-Coupled chemistry, Receptors, Metabotropic Glutamate chemistry, Sweetening Agents chemistry
- Abstract
All sweet-tasting compounds are detected by a single G-protein coupled receptor (GPCR), the heterodimer T1R2-T1R3, for which no experimental structure is available. The sweet taste receptor is a class C GPCR, and the recently published crystallographic structures of metabotropic glutamate receptor (mGluR) 1 and 5 provide a significant step forward for understanding structure-function relationships within this family. In this article, we recapitulate more than 600 single point site-directed mutations and available structural data to obtain a critical alignment of the sweet taste receptor sequences with respect to other class C GPCRs. Using this alignment, a homology 3D-model of the human sweet taste receptor is built and analyzed to dissect out the role of key residues involved in ligand binding and those responsible for receptor activation. Proteins 2017; 85:332-341. © 2016 Wiley Periodicals, Inc., (© 2016 Wiley Periodicals, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
27. Fine-tuning of microsolvation and hydrogen bond interaction regulates substrate channelling in the course of flavonoid biosynthesis.
- Author
-
Diharce J, Golebiowski J, Fiorucci S, and Antonczak S
- Subjects
- Allosteric Regulation, Hydrogen Bonding, Kinetics, Molecular Dynamics Simulation, Thermodynamics, Flavonoids biosynthesis, Solvents chemistry
- Abstract
In the course of metabolite formation, some multienzymatic edifices, the so-called metabolon, are formed and lead to a more efficient production of these natural compounds. One of the major features of these enzyme complexes is the facilitation of direct transfer of the metabolite between enzyme active sites by substrate channelling. Biophysical insights into substrate channelling remain scarce because the transient nature of these macromolecular complexes prevents the observation of high resolution structures. Here, using molecular modelling, we describe the substrate channelling of a flavonoid compound between DFR (dihydroflavonol-4-reductase) and LAR (leucoanthocyanidin reductase). The simulation presents crucial details concerning the kinetic, thermodynamic, and structural aspects of this diffusion. The formation of the DFR-LAR complex leads to the opening of the DFR active site giving rise to a facilitated diffusion, in about 1 μs, of the DFR product towards LAR cavity. The theoretically observed substrate channelling is supported experimentally by the fact that this metabolite, i.e. the product of the DFR enzyme, is not stable in the media. Moreover, along this path, the influence of the solvent is crucial. The metabolite remains close to the surface of the complex avoiding full solvation. In addition, when the dynamic behaviour of the system leads to a loss of interaction between the metabolite and the enzymes, water molecules through bridging H-bonds prevent the former from escaping to the bulk.
- Published
- 2016
- Full Text
- View/download PDF
28. G protein-coupled odorant receptors: From sequence to structure.
- Author
-
de March CA, Kim SK, Antonczak S, Goddard WA 3rd, and Golebiowski J
- Subjects
- Amino Acid Sequence, Animals, Binding Sites, Conserved Sequence, Humans, Mice, Models, Molecular, Molecular Sequence Data, Mutagenesis, Site-Directed, Protein Structure, Tertiary, Receptors, G-Protein-Coupled metabolism, Receptors, Odorant metabolism, Sequence Alignment methods, Structure-Activity Relationship, Receptors, G-Protein-Coupled chemistry, Receptors, G-Protein-Coupled genetics, Receptors, Odorant chemistry, Receptors, Odorant genetics
- Abstract
Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition., (© 2015 The Protein Society.)
- Published
- 2015
- Full Text
- View/download PDF
29. Discrimination between olfactory receptor agonists and non-agonists.
- Author
-
Topin J, de March CA, Charlier L, Ronin C, Antonczak S, and Golebiowski J
- Subjects
- Animals, Calcium metabolism, Cell Line, Humans, Molecular Dynamics Simulation, Odorants analysis, Receptors, Odorant metabolism, Thermodynamics, Calcium analysis, Receptors, Odorant agonists
- Abstract
A joint approach combining free-energy calculations and calcium-imaging assays on the broadly tuned human 1G1 olfactory receptor is reported. The free energy of binding of ten odorants was computed by means of molecular-dynamics simulations. This state function allows separating the experimentally determined eight agonists from the two non-agonists. This study constitutes a proof-of-principle for the computational deorphanization of olfactory receptors., (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2014
- Full Text
- View/download PDF
30. O₂migration rates in [NiFe] hydrogenases. A joint approach combining free-energy calculations and kinetic modeling.
- Author
-
Topin J, Diharce J, Fiorucci S, Antonczak S, and Golebiowski J
- Subjects
- Desulfovibrio enzymology, Diffusion, Hydrogenase genetics, Kinetics, Movement, Mutation, Protein Conformation, Thermodynamics, Hydrogenase chemistry, Hydrogenase metabolism, Molecular Dynamics Simulation, Oxygen metabolism
- Abstract
Hydrogenases are promising candidates for the catalytic production of green energy by means of biological ways. The major impediment to such a production is rooted in their inhibition under aerobic conditions. In this work, we model dioxygen migration rates in mutants of a hydrogenase of Desulfovibrio fructusovorans. The approach relies on the calculation of the whole potential of mean force for O2 migration within the wild-type as well as in V74M, V74F, and V74Q mutant channels. The three free-energy barriers along the entire migration pathway are converted into chemical rates through modeling based on Transition State Theory. The use of such a model recovers the trend of O2 migration rates among the series.
- Published
- 2014
- Full Text
- View/download PDF
31. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.
- Author
-
Topin J, Rousset M, Antonczak S, and Golebiowski J
- Subjects
- Catalytic Domain, Desulfovibrio chemistry, Desulfovibrio genetics, Diffusion, Hydrogen chemistry, Hydrogenase chemistry, Hydrogenase genetics, Kinetics, Models, Molecular, Oxygen chemistry, Point Mutation, Thermodynamics, Desulfovibrio enzymology, Hydrogen metabolism, Hydrogenase metabolism, Oxygen metabolism
- Abstract
We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view., (Copyright © 2011 Wiley Periodicals, Inc.)
- Published
- 2012
- Full Text
- View/download PDF
32. Molecular Features Underlying the Perception of Astringency as Probed by Molecular Modeling.
- Author
-
Golebiowski J, Fiorucci S, Adrian-Scotto M, Fernandez-Carmona J, and Antonczak S
- Published
- 2011
- Full Text
- View/download PDF
33. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism.
- Author
-
Antonczak S, Fiorucci S, Golebiowski J, and Cabrol-Bass D
- Subjects
- Dioxygenases chemistry, Models, Molecular, Quantum Theory, Dioxygenases metabolism, Oxygen metabolism, Quercetin metabolism
- Abstract
Quercetinase enzymatic activity consists in the addition of dioxygen onto flavonoids, some natural polyphenol compounds, leading to the production of both molecular carbon monoxide and to the structurally related depside compound. Experimental studies have reported degradation rates of various flavonoids by such enzymes that can not be directly correlated neither to the number nor to the place of the hydroxyl groups. In order to decipher the role of these functions, we have theoretically characterised the stationary points of various flavonoids oxygenolysis mechanisms by density functional quantum methods. Thus in the present study are reported the main energetic, structural and electronic features that drive this degradation. Together with previous analysis from MD simulations taking into account the dynamic behaviour of the substrate embedded in the enzyme cavity, the present results show that the role of the enzyme, in terms of structural and electronic effects, can not be neglected. Thus, we propose here that deformations of the substrate induced by the enzyme could originate the differences in the degradation rates experimentally observed.
- Published
- 2009
- Full Text
- View/download PDF
34. Deciphering the selectivity of Bombyx mori pheromone binding protein for bombykol over bombykal: a theoretical approach.
- Author
-
Charlier L, Antonczak S, Jacquin-Joly E, Cabrol-Bass D, and Golebiowski J
- Subjects
- Animals, Binding Sites, Intercellular Signaling Peptides and Proteins, Protein Binding, Alkadienes chemistry, Bombyx chemistry, Carrier Proteins chemistry, Fatty Alcohols chemistry, Insect Proteins chemistry, Thermodynamics
- Abstract
In this article we report calculations dedicated to estimate the selectivity of the Bombyx mori pheromone binding protein towards the two closely related pheromonal components Bombykol and Bombykal. The selectivity is quantified by the binding free-energy difference, obtained either by the thermodynamic integration or by the MM-GBSA approach. In the latter, the selectivity is decomposed on a per-residue basis, which identifies the residues considered crucial for the selectivity of the protein for Bombykol over Bombykal. A discussion on the role of Bombyx mori pheromone binding protein is provided on the basis of these results.
- Published
- 2008
- Full Text
- View/download PDF
35. Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
- Author
-
Fiorucci S, Golebiowski J, Cabrol-Bass D, and Antonczak S
- Subjects
- Antioxidants chemistry, Binding Sites, Lipoxygenase chemistry, Quercetin chemistry, Structure-Activity Relationship, Antioxidants metabolism, Computer Simulation, Lipoxygenase metabolism, Models, Chemical, Quercetin metabolism
- Abstract
Inhibition of lipoxygenases (LOXs) by flavonoid compounds is now well documented, but the description of the associated mechanism remains controversial due to a lack of information at the molecular level. For instance, X-ray determination of quercetin/LOX-3 system has led to a structure where the enzyme was cocrystallized with a degradation product of the substrate, which rendered the interpretation of the reported interactions between this flavonoid compound and the enzyme difficult. Molecular modeling simulations can in principle allow obtaining precious insights that could fill this lack of structural information. Thus, in this study, we have investigated various binding modes of quercetin to LOX-3 enzyme in order to understand the first step of the inhibition process, that is the association of the two entities. Molecular dynamics simulations and free energy calculations suggest that quercetin binds the metal center via its 3-hydroxychromone function. Moreover, enzyme/substrate interactions within the cavity impose steric hindrances to quercetin that may activate a direct dioxygen addition on the substrate., ((c) 2008 Wiley-Liss, Inc.)
- Published
- 2008
- Full Text
- View/download PDF
36. Binding free energy prediction in strongly hydrophobic biomolecular systems.
- Author
-
Charlier L, Nespoulous C, Fiorucci S, Antonczak S, and Golebiowski J
- Subjects
- Binding Sites, Calorimetry, Models, Molecular, Molecular Structure, Thermodynamics, Lipocalins chemistry, Pyrazines chemistry
- Abstract
We present a comparison of various computational approaches aiming at predicting the binding free energy in ligand-protein systems where the ligand is located within a highly hydrophobic cavity. The relative binding free energy between similar ligands is obtained by means of the thermodynamic integration (TI) method and compared to experimental data obtained through isothermal titration calorimetry measurements. The absolute free energy of binding prediction was obtained on a similar system (a pyrazine derivative bound to a lipocalin) by TI, potential of mean force (PMF) and also by means of the MMPBSA protocols. Although the TI protocol performs poorly either with an explicit or an implicit solvation scheme, the PMF calculation using an implicit solvation scheme leads to encouraging results, with a prediction of the binding affinity being 2 kcal mol(-1) lower than the experimental value. The use of an implicit solvation scheme appears to be well suited for the study of such hydrophobic systems, due to the lack of water molecules within the binding site.
- Published
- 2007
- Full Text
- View/download PDF
37. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.
- Author
-
Fiorucci S, Golebiowski J, Cabrol-Bass D, and Antonczak S
- Subjects
- Computer Simulation, Models, Molecular, Oxidation-Reduction, Protein Binding, Protein Structure, Tertiary, Substrate Specificity, Water chemistry, Dioxygenases chemistry, Dioxygenases metabolism, Flavonoids chemistry, Flavonoids metabolism
- Abstract
Molecular dynamics simulations, using the AMBER force field, were performed to study Quercetin 2,3-Dioxygenase enzyme (Quercetinase or 2,3QD). We have analyzed the structural modifications of the active site and of the linker region between the native enzyme and the enzyme-substrate complex. New structural informations, such as an allosteric effect in the presence of the substrate, as well as description of the enzyme-substrate interactions and values of binding free energies were brought out. All these results confirm the idea that the linker encloses the substrate in the active site and also enlighten the recognition role of the substrate B-ring by the enzyme. Moreover, a specific interaction scheme has been proposed to explain the relative degradation rate of various flavonoid compounds under the oxygenolysis reaction catalyzed by the Quercetin 2,3-Dioxygenase enzyme., (2007 Wiley-Liss, Inc.)
- Published
- 2007
- Full Text
- View/download PDF
38. Cerium(IV)-mediated oxidation of flavonol with relevance to flavonol 2,4-dioxygenase. Direct evidence for spin delocalization in the flavonoxy radical.
- Author
-
Kaizer J, Ganszky I, Speier G, Rockenbauer A, Korecz L, Giorgi M, Réglier M, and Antonczak S
- Subjects
- Crystallography, X-Ray, Models, Molecular, Oxidation-Reduction, Spin Labels, Cerium chemistry, Dioxygenases chemistry, Flavonols chemistry
- Abstract
The cerium(IV)-mediated oxidation of 3-hydroxy-4'-methylflavone (1) proceeds by H-atom abstraction forming the flavonoxy radical (7), and the subsequent combination of its resonance forms leads to the 3-hydroxy-4'-methylflavone dehydro dimer (9). The above system serves as direct evidence for the intermediacy of the flavonoxy radical, its spin delocalization, and also indirect evidence for valence tautomerism as a key step on the substrate activation both in the quercetinase and its biomimic model system.
- Published
- 2007
- Full Text
- View/download PDF
39. Mechanistic events underlying odorant binding protein chemoreception.
- Author
-
Golebiowski J, Antonczak S, Fiorucci S, and Cabrol-Bass D
- Subjects
- Amino Acids, Binding Sites, Carrier Proteins chemistry, Carrier Proteins metabolism, Computational Biology, Conserved Sequence, Ligands, Models, Molecular, Protein Binding, Receptors, Odorant metabolism, Computer Simulation, Receptors, Odorant chemistry
- Abstract
Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin., ((c) 2007 Wiley-Liss, Inc.)
- Published
- 2007
- Full Text
- View/download PDF
40. DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes.
- Author
-
Fiorucci S, Golebiowski J, Cabrol-Bass D, and Antonczak S
- Subjects
- Chemical Phenomena, Chemistry, Physical, Copper pharmacology, Structure-Activity Relationship, Thermodynamics, Antioxidants, Free Radical Scavengers, Oxidants, Quercetin chemistry, Quercetin pharmacology
- Abstract
Quercetin, one of the most representative flavonoid compounds, is involved in antiradical, antioxidant, and prooxidant biological processes. Despite a constant increase of knowledge on both positive and negative activities of quercetin, it is unclear which activated form (quinone, semiquinone, or deprotonated) actually plays a role in each of these processes. Structural, electronic, and energetic characteristics of quercetin, as well as the influence of a copper ion on all of these parameters, are studied by means of quantum chemical electronic structure calculations. Introduction of thermodynamic cycles together with the role of coreactive compounds, such as reactive oxygen species, gives a glimpse of the most probable reaction schemes. Such a theoretical approach provides another hint to clarify which reaction is likely to occur within the broad range of quercetin biological activities.
- Published
- 2007
- Full Text
- View/download PDF
41. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
- Author
-
Fiorucci S, Golebiowski J, Cabrol-Bass D, and Antonczak S
- Subjects
- Computer Simulation, Dioxygenases metabolism, Quercetin metabolism, Thermodynamics, Binding Sites, Dioxygenases chemistry, Oxygen metabolism
- Abstract
Molecular dynamics simulations performed on quercetin 2,3-dioxygenase have shown the existence of a channel linking the bulk solvent and the cavity of the enzyme. Although much is known about the the oxygenolysis reaction catalyzed by this enzyme, the way dioxygen enters the active site has not been firmly established. The size, orientation and hydrophobic character of this channel suggests that it could provide an entrance for molecular dioxygen into the cavity. Free energy calculations show that such a process is likely to occur., ((c) 2006 Wiley-Liss, Inc.)
- Published
- 2006
- Full Text
- View/download PDF
42. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations.
- Author
-
Golebiowski J, Antonczak S, Fernandez-Carmona J, Condom R, and Cabrol-Bass D
- Subjects
- Aptamers, Nucleotide chemistry, Base Pair Mismatch, Base Pairing, Computational Biology, Computer Simulation, HIV Long Terminal Repeat genetics, Nucleic Acid Conformation, Water chemistry, Models, Molecular, RNA chemistry
- Abstract
Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.
- Published
- 2004
- Full Text
- View/download PDF
43. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
- Author
-
Fiorucci S, Golebiowski J, Cabrol-Bass D, and Antonczak S
- Subjects
- Copper chemistry, Cyclization, Dioxygenases chemistry, Humans, Models, Molecular, Molecular Structure, Oxidation-Reduction, Quercetin chemistry, Oxygen chemistry, Quercetin chemical synthesis
- Abstract
Flavonoids are naturally occurring phenol derivatives present in substantial amounts in a large variety of plants, fruits and vegetables daily eaten by humans. Most of these compounds exhibit several interesting biological activities, such as antiradical and antioxidant actions. Indeed, by complexation with specific enzymes, flavonoids are notably liable to metabolize molecular dioxygen. On the basis of experimental results describing oxygenolysis of the flavonoid quercetin, activated by the enzyme quercetin 2,3-dioxygenase (2,3-QD),ur attention has focused on the role of metal center in the activation of the substrate quercetin. Thus, in the present study, by means of DFT calculations at the B3LYP/ 6-31(+)G* level on model molecular systems, we describe different mechanisms for dioxygen metabolization by quercetin. Stationary points are described, and energetic and structural analyses along the reaction paths are reported. Our calculations show that the copper cation must act as an oxidant towards the substrate and that the reaction proceeds through a 1,3-cycloaddition.
- Published
- 2004
- Full Text
- View/download PDF
44. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.
- Author
-
Golebiowski J, Antonczak S, Di-Giorgio A, Condom R, and Cabrol-Bass D
- Subjects
- Amino Acid Motifs, Base Sequence, Binding Sites, Carbohydrates chemistry, Computer Simulation, Crystallography, X-Ray, Guanine chemistry, Hydrogen Bonding, Ions, Magnetic Resonance Spectroscopy methods, Models, Chemical, Models, Molecular, Models, Statistical, Molecular Conformation, Nucleic Acid Conformation, Protein Binding, Protein Conformation, Protein Structure, Tertiary, RNA, Viral, Sodium chemistry, Static Electricity, Water chemistry, Hepacivirus metabolism, Ribosomes chemistry
- Abstract
The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.
- Published
- 2004
- Full Text
- View/download PDF
45. Intramolecular allyl transfer reaction from allyl ether to aldehyde groups: experimental and theoretical studies.
- Author
-
Franco D, Wenger K, Antonczak S, Cabrol-Bass D, Duñach E, Rocamora M, Gomez M, and Muller G
- Abstract
The intramolecular transfer of the allyl group of functionalized allyl aryl ethers to an aldehyde group in the presence of Ni0 complexes was studied from chemical, electrochemical and theoretical points of view. The chemical reaction involves the addition of Ni0 to the allyl ether followed by stoichiometric allylation. The electrochemical process is catalytic in nickel and involves the reduction of intermediate eta3-allylnickel(II) complexes.
- Published
- 2002
- Full Text
- View/download PDF
46. Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.
- Author
-
Gisdakis P, Antonczak S, Köstlmeier S, Herrmann WA, and Rösch N
- Abstract
A spiro attack on a peroxo group is calculated to be the preferred reaction pathway for olefin epoxidation with the catalytic system CH
3 ReO3 /H2 O2 (see picture). This finding is supported by density functional calculations on more than ten transition states for the most probable mechanisms. Hydration has significant effects on various reaction species: it stabilizes the intermediates and destabilizes, with one exception, the transition states., (© 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.)- Published
- 1998
- Full Text
- View/download PDF
47. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding.
- Author
-
Marie-Claire C, Ruffet E, Antonczak S, Beaumont A, O'Donohue M, Roques BP, and Fournié-Zaluski MC
- Subjects
- Amino Acid Sequence, Arginine metabolism, Bacillus subtilis enzymology, Bacillus subtilis genetics, Binding, Competitive, DNA, Complementary genetics, Glycopeptides metabolism, Hydrolysis, Models, Molecular, Molecular Sequence Data, Neprilysin antagonists & inhibitors, Neprilysin biosynthesis, Neprilysin metabolism, Protease Inhibitors metabolism, Recombinant Proteins biosynthesis, Recombinant Proteins genetics, Substrate Specificity, Thermolysin antagonists & inhibitors, Thermolysin biosynthesis, Thermolysin metabolism, Thiorphan metabolism, Arginine genetics, Mutagenesis, Site-Directed, Neprilysin genetics, Thermolysin genetics
- Abstract
Neprilysin (neutral endopeptidase-24.11, EC 3.4.24.11) is a mammalian zinc-endopeptidase involved in the degradation of biologically active peptides. Although no atomic structure is available for this enzyme, site-directed mutagenesis studies have shown that its active site resembles closely that of the bacterial zinc-endopeptidase, thermolysin (EC 3.4.24.27). One active site residue of thermolysin, Arg-203, is involved in inhibitor binding by forming hydrogen bonds with the carbonyl group of a residue in the P1 position and also participates in a hydrogen bond network involving Asp-170. Sequence alignment data shows that Arg-717 of neprilysin could play a similar role to Arg-203 of thermolysin. This was investigated by site-directed mutagenesis with Arg-203 of thermolysin and Arg-717 of neprilysin being replaced by methionine residues. This led, in both cases, to decreases in kcat/Km values, of 122-fold for neprilysin and 2300-fold for thermolysin, essentially due to changes in kcat. The Ki values of several inhibitors were also increased for the mutated enzymes. In addition, the replacement of Asp-170 of thermolysin by Ala residue resulted in a decrease in kcat/Km of 220-fold. The results, coupled with a molecular modeling study, suggest that Arg-717 of neprilysin corresponds to Arg-203 of thermolysin and that in both enzymes a hydrogen bond network exists, involving His-142, Asp-170, and Arg-203 in thermolysin and His-583, Asp-650, and Arg-717 in neprilysin, which is crucial for hydrolytic activity.
- Published
- 1997
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.