Maria Cátira Bortolini, Jorge Gómez-Valdés, Francisco Rothhammer, Andres Ruiz-Linares, Anood Sohail, Caio Cesar Silva de Cerqueira, Giovanni Poletti, Carla Gallo, William Arias, Paola Everardo-Martínez, Rodrigo Barquera Lozano, Javier Mendoza-Revilla, Rolando González-José, Tábita Hünemeier, Maria-Laura Parolin, Samuel Canizales-Quinteros, Sagnik Palmal, Claudia Jaramillo, Betty Bonfante, David J. Balding, Valeria Villegas, Victor Acuña-Alonzo, Pierre Faux, Virginia Ramallo, Hugo Villamil-Ramírez, Malena Hurtado, Kaustubh Adhikari, Lavinia Schuler-Faccini, Gabriel Bedoya, Vanessa Granja, Macarena Fuentes-Guajardo, Juan Camilo Chacón-Duque, Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), and Aix Marseille Université (AMU)-EFS ALPES MEDITERRANEE-Centre National de la Recherche Scientifique (CNRS)
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy. Fil: Palmal, Sagnik. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; Francia Fil: Kaustubh Adhikari. The Open University; Reino Unido. University College London; Estados Unidos Fil: Mendoza Revilla, Javier. Universidad Peruana Cayetano Heredia; Perú. Institut Pasteur de Paris.; Francia Fil: Fuentes Guajardo, Macarena. Universidad de Tarapacá; Chile Fil: Silva de Cerqueira, Caio Cesar. Scientific Police of São Paulo State; Brasil Fil: Bonfante, Betty. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia Fil: Chacón Duque, Juan Camilo. Natural History Museum; Reino Unido Fil: Sohail, Anood. Kinnaird College for Women. Department of Biotechnology; Pakistán Fil: Hurtadeo, Malena. Universidad Peruana Cayetano Heredia; Perú Fil: Villegas, Valeria. Universidad Peruana Cayetano Heredia; Perú Fil: Granja, Vanessa. Universidad Peruana Cayetano Heredia; Perú Fil: Jaramillo, Claudia. Kinnaird College for Women. Department of Biotechnology; Pakistán. Universidad de Antioquia; Colombia Fil: Arias, Williams. Universidad de Antioquia; Colombia Fil: Barquera Lozano, Rodrigo. Instituto Nacional de Antropología e Historia; México. Max Planck Institute for the Science of Human History. Department of Archaeogenetics; Alemania Fil: Everardo Martínez, Paola. Instituto Nacional de Antropología e Historia; México Fil: Gómez Valdés, Jorge. Instituto Nacional de Antropología e Historia; México Fil: Villamil Ramirez, Hugo. Universidad Nacional Autónoma de México; México Fil: Hünemeier, Tábita. Universidade de Sao Paulo; Brasil Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidade Federal do Rio Grande do Sul; Brasil Fil: Parolin, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; Argentina Fil: Gonzalez, Rolando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina Fil: Schüler-Faccini, Lavinia. Universidade Federal do Rio Grande do Sul, Porto Alegre; Brasil Fil: Bortolini, María Cátira. Universidade Federal do Rio Grande do Sul; Brasil Fil: Acuña Alonzo, Victor. Instituto Nacional de Antropología e Historia; México. Universidade Federal do Rio Grande do Sul; Brasil Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile. Universidad de Chile; Chile Fil: Balding, David. University College London; Reino Unido. University of Melbourne; Australia Fil: Faux, Pierre. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia Fil: Ruiz Linares, Andrés. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia. University College London; Reino Unido. Fudan University; República de China