7 results on '"Anne-Laure Finoux"'
Search Results
2. Loop extrusion as a mechanism for formation of DNA damage repair foci
- Author
-
Gaëlle Legube, Thomas Clouaire, Vincent Rocher, Philippe E. Mangeot, Pierre Caron, Felix Zhou, Raphaël Mourad, James E. Haber, Coline Arnould, Daan Noordermeer, Kevin Li, Anne-Laure Finoux, Emiliano P. Ricci, Unité de biologie moléculaire, cellulaire et du développement (MCD), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Brandeis University, Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Unité de biologie moléculaire, cellulaire et du développement - UMR5077 (MCD), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE12-0015,REPAIRCHROM,Analyse multi-échelle des mécanismes précoces de remodelage de la chromatine au niveau des dommages dans l'ADN(2018), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and LEGUBE, Gaelle
- Subjects
DNA Double-Strand Breaks ,Saccharomyces cerevisiae Proteins ,DNA Repair ,DNA damage ,DNA repair ,Chromosomal Proteins, Non-Histone ,[SDV]Life Sciences [q-bio] ,Cell Cycle Proteins ,Saccharomyces cerevisiae ,Loop extrusion ,Article ,Cell Line ,Histones ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Transcription (biology) ,Nucleosome ,Humans ,DNA Breaks, Double-Stranded ,γH2AX ,Phosphorylation ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Cohesin ,0303 health sciences ,Phosphorylated Histone H2AX ,Multidisciplinary ,Genome ,Topologically Associated Domains ,DNA ,Chromatin ,Cell biology ,Nucleosomes ,[SDV] Life Sciences [q-bio] ,enzymes and coenzymes (carbohydrates) ,chemistry ,Nucleic Acid Conformation ,DNA Damage Response ,biological phenomena, cell phenomena, and immunity ,Tumor Suppressor p53-Binding Protein 1 ,030217 neurology & neurosurgery - Abstract
The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a ‘repair-prone’ environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX–53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion. During the repair of double-stranded DNA breaks, cohesin mediates the extrusion of loops of DNA along which phosphorylated H2AX spreads to establish a repair zone.
- Published
- 2021
3. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression
- Author
-
Claire Moulis, Anne-Laure Finoux, Muriel Cocaign-Bousquet, Laurence Girbal, Sébastien Nouaille, Sophie Mondeil, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Centre de génétique moléculaire (CGM), Centre National de la Recherche Scientifique (CNRS), Institut National de la recherche Agronomique, Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Nouaille, Sebastien
- Subjects
0301 basic medicine ,RNA Stability ,[SDV]Life Sciences [q-bio] ,030106 microbiology ,Biotechnologies ,Biology ,03 medical and health sciences ,Species Specificity ,Transcription (biology) ,Gene expression ,phylogénie ,Genetics ,Escherichia coli ,RNA, Messenger ,expression arn m ,Gene ,bactérie ,Regulation of gene expression ,Messenger RNA ,Base Sequence ,Lactococcus lactis ,Gene regulation, Chromatin and Epigenetics ,MRNA stabilization ,Gene Expression Regulation, Bacterial ,biology.organism_classification ,Cell biology ,RNA, Bacterial ,030104 developmental biology ,facteur de transcription ,Genome, Bacterial - Abstract
International audience; Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects , either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.
- Published
- 2017
4. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair
- Author
-
Vincent Rocher, Emiliano P. Ricci, Philippe E. Mangeot, Emmanuelle Guillou, Anne-Laure Finoux, Thomas Mangeat, Virginie Daburon, Coline Arnould, Gaëlle Legube, Aline Marnef, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Fondation Innovations en Infectiologie, ERC-StG-LS6-805500, European Research Council, Ligue Contre le Cancer, ANR-11-LABX-0048, Labex Ecofect, European Union's Horizon 2020, ANR-14-CE10-0002-01, Agence Nationale pour la Recherche, Institut National Contre le Cancer, ERC-2014-CoG 647344, European Research Council, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA Repair ,Nucleolus ,Heterochromatin ,Chromosomal Proteins, Non-Histone ,Nuclear Envelope ,LINC complex ,cohesin ,Cell Cycle Proteins ,Biology ,DNA, Ribosomal ,DSB repair ,LINC ,Histones ,03 medical and health sciences ,0302 clinical medicine ,Genetics ,DNA Breaks, Double-Stranded ,Homologous Recombination ,Ribosomal DNA ,030304 developmental biology ,HUSH ,0303 health sciences ,ribosomal DNA ,Cohesin ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Double Strand Break Repair ,Chromatin ,Cell biology ,Gene Expression Regulation ,030220 oncology & carcinogenesis ,chromatin ,RNA, Long Noncoding ,Homologous recombination ,Cell Nucleolus ,Developmental Biology ,Research Paper - Abstract
International audience; The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. DNA double-strand breaks (DSBs) within rDNA induce both rDNA transcriptional repression and nucleolar segregation, but the link between the two events remains unclear. Here we found that DSBs induced on rDNA trigger transcriptional repression in a cohesin-and HUSH (human silencing hub) complex-dependent manner throughout the cell cycle. In S/G2 cells, transcriptional repression is further followed by extended resection within the interior of the nucleolus, DSB mobilization at the nucleolar periphery within nucleolar caps, and repair by homologous recombination. We showed that nuclear envelope invaginations frequently connect the nucleolus and that rDNA DSB mobilization, but not transcriptional repression, involves the nuclear envelope-associated LINC complex and the actin pathway. Altogether , our data indicate that rDNA break localization at the nucleolar periphery is not a direct consequence of transcriptional repression but rather is an active process that shares features with the mobilization of persistent DSB in active genes and heterochromatin.
- Published
- 2019
5. Micro-ARN : oncogènes et suppresseurs de tumeurs
- Author
-
Pascal Chartrand and Anne-Laure Finoux
- Subjects
Regulation of gene expression ,General Medicine ,Biology ,Molecular biology ,Gene ,General Biochemistry, Genetics and Molecular Biology ,Neoplasm genetics - Abstract
Les micro-ARN representent une decouverte majeure dans le domaine de la regulation de l’expression des genes. Ils participent a la regulation de l’expression de proteines en inhibant la traduction et/ou en induisant la degradation de leurs ARNm correspondants. L’etude de leurs fonctions a revele leur role dans la proliferation cellulaire et le developpement chez les metazoaires. La recherche des alterations moleculaires en cause dans l’apparition de cancers a permis d’identifier ces molecules en tant que nouveaux acteurs de la transformation neoplasique. Ainsi, des micro-ARN presentant les caracteristiques d’oncogenes (miR-17-92 ) ou celles de suppresseur de tumeurs (let-7 ) ont ete decouverts ces dernieres annees.
- Published
- 2008
6. [Oncogenic and tumour suppressor microRNAs]
- Author
-
Anne-Laure, Finoux and Pascal, Chartrand
- Subjects
Lung Neoplasms ,Lymphoma, B-Cell ,RNA Stability ,Oncogenes ,Proto-Oncogene Mas ,Gene Expression Regulation, Neoplastic ,Mice ,MicroRNAs ,RNA, Plant ,Protein Biosynthesis ,Animals ,Humans ,Genes, Tumor Suppressor ,RNA Interference ,RNA, Messenger ,RNA, Neoplasm - Abstract
microRNAs constitute one of the most important discovery in the past few years in the field of gene expression regulation. They can precisely regulate the expression of a specific protein by inhibiting its translation and/or promoting the degradation of its mRNA. In several cancers, the expression of some microRNAs is misregulated, pointing toward the existence of microRNAs with oncogenic or tumour suppressor properties. The miR-17-92 miRNA cluster has been reported to have a pro-oncogenic role in a mouse model system of Myc-induced B cell lymphoma. Some of its targets mRNAs code for proteins with pro-apoptotic or anti-proliferative functions, which shed some light on the mechanism of action of this cluster. On the other hand, a tumour suppressor miRNA like let-7 targets mRNAs coding for oncogenes and is frequently down-regulated in cancers. The finding that c-Myc controls the expression of several of these microRNAs reveals new information on how misregulation of this proto-oncogene can promote tumorigenesis.
- Published
- 2009
7. In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates
- Author
-
Bertrand Séraphin, Anne-Laure Finoux, Centre de génétique moléculaire (CGM), Centre National de la Recherche Scientifique (CNRS), and bourse FRM à AL Finoux
- Subjects
Untranslated region ,MESH: Ribonucleases ,Saccharomyces cerevisiae Proteins ,Protein subunit ,Recombinant Fusion Proteins ,Molecular Sequence Data ,Biology ,MESH: Base Sequence ,Biochemistry ,Exosome ,Ribonucleoprotein, U1 Small Nuclear ,Fungal Proteins ,03 medical and health sciences ,0302 clinical medicine ,Ribonucleases ,MESH: Saccharomyces cerevisiae Proteins ,Genes, Reporter ,P-bodies ,MESH: Recombinant Fusion Proteins ,Animals ,Humans ,MESH: Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,RNA, Messenger ,Binding site ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Molecular Biology ,030304 developmental biology ,MESH: RNA, Messenger ,0303 health sciences ,MESH: Humans ,MESH: Molecular Sequence Data ,Base Sequence ,MESH: Ribonucleoprotein, U1 Small Nuclear ,MESH: Genes, Reporter ,RNA ,RNA-Binding Proteins ,Cell Biology ,MESH: Protein Subunits ,Molecular biology ,Yeast ,Cell biology ,Protein Subunits ,MESH: Nucleic Acid Conformation ,MESH: RNA-Binding Proteins ,Nucleic Acid Conformation ,MESH: Fungal Proteins ,030217 neurology & neurosurgery ,Binding domain - Abstract
Deadenylation is the rate-limiting step of mRNA decay, yet little is known about the mechanism regulating this process. In yeast, deadenylation is mainly mediated by the Pop2-Ccr4 complex. We tested whether the selective recruitment of this deadenylase to target mRNAs was sufficient to stimulate their decay in vivo. For this purpose, the Pop2 factor was fused to a U1A RNA binding domain while U1A binding sites were inserted in untranslated regions of a reporter transcript. Analysis of the reporter fate in strains expressing the Pop2-U1A-RBD fusion demonstrated a specific activation of target mRNA decay. Increased mRNA degradation involved accumulation of deadenylated mRNAs that was not detected when the control factors Dcp2 or Pub1 were tethered to the same transcript. The rapid target mRNA degradation was also accompanied by the appearance of new decay intermediates generated by the 3' -5' trimming of the corresponding 3' -untranslated region. Interestingly, this process was not mediated by the exosome but may result from the activity of the Pop2-Ccr4 deadenylase itself. These results indicate that selective recruitment of the Pop2-Ccr4 deadenylase is sufficient to activate mRNA decay, even though this process can also be stimulated by additional mechanisms. Furthermore, deadenylase recruitment affects the downstream path of mRNA decay.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.