Paul C. Schiller, Marie Claire Venier-Julienne, Jérôme Guicheux, Xavier Garric, Claudia N. Montero-Menei, Anne des Rieux, Saikrishna Kandalam, Fabien Violet, Gaëtan J.-R. Delcroix, Emilie M. André, Laurence Sindji, Micro et Nanomédecines Translationnelles (MINT), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), GRECC and Research Service [Miami, FL, USA], Veterans Affairs Medical Center [Miami], Department of Orthopaedics, Tissue Bank, Geriatrics and Interdisciplinary Stem Cell Institutes [Miami, FL, USA], University of Miami Leonard M. Miller School of Medicine (UMMSM), Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Department of Biochemistry & Molecular Biology [Miami, FL, USA], Geriatrics Institute [Miami, FL, USA], Advanced Drug Delivery and Biomaterials [Brussels, Belgium], Université Catholique de Louvain = Catholic University of Louvain (UCL)-Louvain Drug Research Institute (LDRI), Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Université de Nantes - UFR Odontologie, Université de Nantes (UN), Ostéo-articulaire - Tête et cou - Odontologie - Neurochirurgie - Neurotraumatologie [CHU Nantes] (Pôle hospitalo-universitaire PHU4 - OTONN), Centre hospitalier universitaire de Nantes (CHU Nantes), Groupe STEP (Inserm U791 - LIOAD), Laboratoire d'ingénierie osteo-articulaire et dentaire (LIOAD), Université de Nantes (UN)-IFR26-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes (UN)-IFR26-Institut National de la Santé et de la Recherche Médicale (INSERM), Project funded by the European Commission, Education, Audiovisual and Culture Executive Agency (EACEA), Erasmus Mundus programme, NanoFar doctorate and by ‘‘Région Pays de La Loire'., and Jehan, Frederic
Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-AD) and chemokines (MIP-1αβ, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system.Combinatorial tissue engineering strategies for the central nervous system are scarce. We developed and characterized a novel injectable non-toxic stem cell and protein delivery system providing regenerative cues for central nervous system disorders. BDNF, a neurotrophic factor with a wide-range effect, was nanoprecipitated to maintain its structure and released in a sustained manner from novel polymeric microcarriers. The combinatorial 3D support, provided by fibronectin-microcarriers and the hydrogel, to the mesenchymal stem cells guided the cells towards a neuronal differentiation and enhanced their tissue repair properties by promoting growth factors and cytokine secretion. The long-term release of physiological doses of bioactive BDNF, combined to the enhanced secretion of tissue repair factors from the stem cells, constitute a promising therapeutic approach.