Icaro V. Soares, Mingxiang Gao, Erdem Cil, Zvonimir Sipus, Anja K. Skrivervik, John S. Ho, Denys Nikolayev, Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Department of Physics [Zagreb], Faculty of Science [Zagreb], University of Zagreb-University of Zagreb, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie, University of Zagreb, National University of Singapore (NUS), French Agence Nationale de la Recherche (ANR) through the Project 'MedWave' (Grant Number: ANR-21-CE19-0045)French Region of Brittany through the Stratégie d’attractivité durable (SAD) Project 'EM-NEURO', ANR-21-CE19-0045,MedWave,Localisation et alimentation sans fil multiplexées de microdispositifs gastro-intestinaux grâce à technologies bio-adaptatives de contrôle des ondes(2021), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
International audience; The wireless power transfer (WPT) efficiency to implanted bioelectronic devices is constrained by several frequency-dependent physical mechanisms. Recent works have developed several mathematical formulations to understand these mechanisms and predict the optimal operating conditions. However, the existing approaches rely on simplified body models, which are unable to capture important aspects of WPT. Therefore, this article proposes the efficiency analysis approach in anatomical models that can provide insightful information on achieving the optimum operation conditions. First, this approach is validated with a theoretical spherical wave expansion (SWE) analysis, and the results for a simplified spherical model and a human pectoral model are compared. The results show that although a magnetic receiver outperforms an electric one for near-field operation and both the sources could be equally use in the far-field range, it is in the mid-field that the maximum efficiency is achieved with an optimum frequency between 1 and 5 GHz depending on the implantation depth. The receiver orientation is another factor that affects the efficiency, with a maximum difference between the best and worst case scenarios around five times for the electric source and over 13 times for the magnetic one. This approach is used to analyze the case of a deep-implanted pacemaker wirelessly powered by an on-body transmitter and subjected to stochastic misalignments. We evaluate the efficiency and exposure, and we demonstrate how a buffered transmitter can be tailored to achieve maximum powering efficiency. Finally, design guidelines that lead to optimal implantable WPT systems are established from the results obtained with the proposed approach.