Shilu Tong, Jingjun Wang, Peng Bi, Huaiyu Tian, Xiao-ling Lu, Sen Zhou, Jian-Hua Dong, Angela D. Luis, Bernard Cazelles, Bryan T. Grenfell, Shen Li, Jing Wei, Jianhui Qu, Marko Laine, Chaofeng Ma, Pengbo Yu, Bing Xu, Shanqian Huang, Beijing Normal University (BNU), Shaanxi Provincial Centre for disease control and prevention, University of Montana, Princeton University, Fogarty International Center, National Institutes of Health [Bethesda] (NIH), University of Adelaide, Unité de modélisation mathématique et informatique des systèmes complexes [Bondy] (UMMISCO), Université Cadi Ayyad [Marrakech] (UCA)-Université de Yaoundé I-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Institut de la francophonie pour l'informatique-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de biologie de l'ENS Paris (IBENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Finnish Meteorological Institute (FMI), Xi'an Centre for disease control and prevention, Tsinghua University [Beijing] (THU), Hu county ventre for disease control and prevention of Shaanxi province, Queensland University of Technology [Brisbane] (QUT), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Yaoundé I-Institut de la francophonie pour l'informatique-Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)-Université Gaston Bergé (Saint-Louis, Sénégal)-Université Cadi Ayyad [Marrakech] (UCA), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS)
Background Increased risks for hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus have been observed since 2005, in Xi’an, China. Despite increased vigilance and preparedness, HFRS outbreaks in 2010, 2011, and 2012 were larger than ever, with a total of 3,938 confirmed HFRS cases and 88 deaths in 2010 and 2011. Methods and Findings Data on HFRS cases and weather were collected monthly from 2005 to 2012, along with active rodent monitoring. Wavelet analyses were performed to assess the temporal relationship between HFRS incidence, rodent density and climatic factors over the study period. Results showed that HFRS cases correlated to rodent density, rainfall, and temperature with 2, 3 and 4-month lags, respectively. Using a Bayesian time-series Poisson adjusted model, we fitted the HFRS outbreaks among humans for risk assessment in Xi’an. The best models included seasonality, autocorrelation, rodent density 2 months previously, and rainfall 2 to 3 months previously. Our models well reflected the epidemic characteristics by one step ahead prediction, out-of-sample. Conclusions In addition to a strong seasonal pattern, HFRS incidence was correlated with rodent density and rainfall, indicating that they potentially drive the HFRS outbreaks. Future work should aim to determine the mechanism underlying the seasonal pattern and autocorrelation. However, this model can be useful in risk management to provide early warning of potential outbreaks of this disease., Author Summary Hemorrhagic fever with renal syndrome (HFRS, caused by hantavirus) is a zoonotic infectious disease reservoired in rodent populations worldwide, but with 90% of the total cases occurring in China. Xi’an is one of the most endemic areas in China, with a total of 7,748 confirmed HFRS cases from 2005 to 2012. HFRS came to the attention of the public when two larger outbreaks occurred in Xi’an in 2010 and 2011, with 1,366 and 1,067 cases being reported, respectively. By using 8 years of surveillance data (2005–2012) on HFRS dynamics, including data on the main rodent host reservoir, human cases, and weather conditions, we show how the epidemic dynamics of HFRS were associated with seasonality, rodent abundance, rainfall, and temperature. We find that the two larger HFRS outbreaks coincided with the abrupt increase of rodent abundance and/or rainfall. We present a statistical model revealing strong effects of seasonality and autocorrelation and additional effects of rodent density and rainfall on HFRS incidence that gives robust prediction; this approach could be a very practical tool in Xi’an.