Bertrand Chazallon, Stéphane Plus, Maryna Kudinova, Géraud Bouwmans, Karen Baudelle, Laurent Bigot, Olivier Vanvincq, Andy Cassez, Remy Bernard, Hicham El Hamzaoui, Johann Troles, Rémi Habert, Prysmian Group, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), French Agence Nationale de la Recherche: SPICY projectFrench National Research Agency (ANR) [ANR-16-CE240015], LABEX CEMPI [ANR-11-LABX-0007], Equipex Flux [ANR-11-EQPX-0017], Ministry of Higher Education and Research Ministry of Higher Education and Scientific Research (MHESR), Hauts de-France Regional Council, European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics for Society, P4S) European Union (EU), Jiang, Digonnet, MJF, ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), ANR-11-EQPX-0017,FLUX,Fibres optiques pour les hauts Flux(2011), Photonique (Photonique), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE24-0015,SPICY,Fibres à cristal photonique à base de silicium(2016), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
International audience; Hybrid optical fibers, i.e. optical fibers that combine, in the same structure, glass with crystal, metal, polymer or a second type of glass, open access to a wide range of optical properties or optical functions not accessible to common single-glass-made optical fibers. Silicon-core fibers are one type of hybrid fibers that have been intensively studied since 2006 with the aim to take benefit of the mid-infrared transparency of silicon or to implement opto-electrical functions in the optical fiber itself. Some of the unique optical properties of these semiconductor-core fibers have been demonstrated but it is admitted that optical losses are still today a drag on the rise of performances and hence devote specific attention. Post-processing based on laser or thermal annealing can be applied on the as-drawn fibers to improve core crystallinity and then reduce optical losses. However, such processing techniques have been demonstrated on centimeter-long fibers only. In the present paper, we demonstrate as-drawn silicon-core fiber with loss level below 0.2 dB/cm on the 1250-1650nm wavelength range, this fiber being continuously manufactured over length exceeding one hundred of meters. Several fibers have been fabricated from a rod-in-stack approach and different core dimensions ranging from about 0.8 to 3.4 mu m have been successively realized and extensive characterizations (XRD, micro-Raman spectroscopy, TEM and ToF-SIMS analysis) have been conducted on the 3.4 mu m core fiber. The crystalline state of the core, the absence of oxygen contamination and the optical transmission from 1.1 to 4 mu m will be presented.