1. High pressure-temperature phase diagram of ammonia hemihydrate
- Author
-
Andriambariarijaona, L., Zhang, F. Datchi H., Béneut, K., Baptiste, B., Guignot, N., and Ninet, S.
- Subjects
Condensed Matter - Materials Science ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report a comprehensive experimental investigation of the phase diagram of ammonia hemihydrate (AHH) in the range of 2-30 GPa and 300-700 K, based on Raman spectroscopy and x-ray diffraction experiments and visual observations. Four solid phases, denoted AHH-II, DIMA, pbcc and qbcc, are present in this domain, one of which, AHH-qbcc was discovered in this work. We show that, unlike previously thought, the body-centered cubic (bcc) phase obtained on heating AHH-II below 10 GPa, denoted here as AHH-pbcc, is distinct from the DIMA phase, although both present the same bcc structure and O/N positional disorder. Our results actually indicates that AHH-pbcc is a plastic form of DIMA, characterized by free molecular rotations. AHH-qbcc is observed in the intermediate P-T range between AHH-II and DIMA. It presents a complex x-ray pattern reminiscent of the "quasi-bcc" structures that have been theoretically predicted, although none of these structures is consistent with our data. The transition lines between all solid phases as well as the melting curve have been mapped in detail, showing that: (1) the new qbcc phase is the stable one in the intermediate P-T range 10-19 GPa, 300-450 K, although the II-qbcc transition is kinetically hindered for T < 450 K, and II directly transits to DIMA in a gradual fashion from 25 to 35 GPa at 300 K. (2) The stability domain of qbcc shrinks above 450 K and eventually terminates at a pbcc-qbcc-DIMA triple point at 21.5 GPa-630 K. (3) A direct and reversible transition occurs between AHH-pbcc and DIMA above 630 K. (4) The pbcc solid stability domain extends up to the melting line above 3 GPa, and a II-pbcc-liquid triple point is identified at 3 GPa-320 K., Comment: 12 pages, 9 figurs
- Published
- 2023