1. Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-polymer hybrids for different monomer concentrations
- Author
-
Andrey V. Malkovskiy, Ariane Tom, Lydia-Marie Joubert, and Zhenan Bao
- Subjects
Medicine ,Science - Abstract
Abstract CLARITY is a tissue preservation and optical clearing technique whereby a hydrogel is formed directly within the architectural confines of ex vivo brain tissue. In this work, the extent of polymer gel formation and crosslinking within tissue was assessed using Raman spectroscopy and rheology on CLARITY samples prepared with a range of acrylamide monomer (AAm) concentrations (1%, 4%, 8%, 12% w/v). Raman spectroscopy of individual neurons within hybrids revealed the chemical presence and distribution of polyacrylamide within the mouse hippocampus. Consistent with rheological measurements, lower %AAm concentration decreased shear elastic modulus G’, providing a practical correlation with sample permeability and protein retention. Permeability of F(ab)’2 secondary fluorescent antibody changes from 9.3 to 1.4 µm2 s−1 going from 1 to 12%. Notably, protein retention increased linearly relative to standard PFA-fixed tissue from 96.6% when AAm concentration exceeded 1%, with 12% AAm samples retaining up to ~ 99.3% native protein. This suggests that though 1% AAm offers high permeability, additional %AAm may be required to enhance protein. Our quantitative results on polymer distribution, stability, protein retention, and macromolecule permeability can be used to guide the design of future CLARITY-based tissue-clearing solutions, and establish protocols for characterization of novel tissue-polymer hybrid biomaterials using chemical spectroscopy and rheology.
- Published
- 2022
- Full Text
- View/download PDF