Andrew Callan-Jones, Patricia Bassereau, Jacques Prost, Krishnan Raghunathan, Dhiraj Bhatia, Jean-Baptiste Manneville, Henri-François Renard, Gregory A. Voth, Ludger Johannes, Emma Evergren, Mijo Simunovic, Harvey T. McMahon, Anne K. Kenworthy, James Franck Institute, University of Chicago, Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Compartimentation et dynamique cellulaires (CDC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC), Chimie biologique des membranes et ciblage thérapeutique (CBMCT - UMR 3666 / U1143), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre for Cancer Research and Cell Biology, Queen's University [Belfast] (QUB), Medical Research Council Laboratory of Molecular Biology, Cambridge, Vanderbilt University School of Medicine [Nashville], National University of Singapore (NUS), Matière et Systèmes Complexes (MSC (UMR_7057)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE23-0005,DALLISH,Assimilation de Données et Microscopie à Feuille de Lumière Structurée pour la Modélisation des Voies d'Endocytose et d'Exocytose en Cellule Unique(2016), Physico-Chimie-Curie ( PCC ), Centre National de la Recherche Scientifique ( CNRS ) -INSTITUT CURIE-Université Pierre et Marie Curie - Paris 6 ( UPMC ), Compartimentation et dynamique cellulaires ( CDC ), Chimie biologique des membranes et ciblage thérapeutique ( CBMCT - UMR 3666 / U1143 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut Curie-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Queen's University [Belfast] ( QUB ), National University of Singapore ( NUS ), Matière et Systèmes Complexes ( MSC ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), and HAL UPMC, Gestionnaire
International audience; Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.