19 results on '"Andrea Dalle Vedove"'
Search Results
2. Identification of a BAZ2A-Bromodomain Hit Compound by Fragment Growing
- Author
-
Andrea Dalle Vedove, Giulia Cazzanelli, Laurent Batiste, Jean-Rémy Marchand, Dimitrios Spiliotopoulos, Jessica Corsi, Vito Giuseppe D’Agostino, Amedeo Caflisch, Graziano Lolli, University of Zurich, Caflisch, Amedeo, and Lolli, Graziano
- Subjects
BAZ2A bromodomain ,1303 Biochemistry ,Prostate cancer ,3002 Drug Discovery ,BAZ2A bromodomain, Prostate cancer, Fragment growing, X-ray crystallography, Molecular docking, Binding assays ,Organic Chemistry ,610 Medicine & health ,Fragment growing ,Biochemistry ,Molecular docking ,Drug Discovery ,10019 Department of Biochemistry ,570 Life sciences ,biology ,Binding assays ,1605 Organic Chemistry ,X-ray crystallography - Abstract
BAZ2A is an epigenetic regulator affecting transcription of ribosomal RNA. It is overexpressed in aggressive and recurrent prostate cancer, promoting cellular migration. Its bromodomain is characterized by a shallow and difficult-to-drug pocket. Here, we describe a structure-based fragment-growing campaign for the identification of ligands of the BAZ2A bromodomain. By combining docking, competition binding assays, and protein crystallography, we have extensively explored the interactions of the ligands with the rim of the binding pocket, and in particular ionic interactions with the side chain of Glu1820, which is unique to BAZ2A. We present 23 high-resolution crystal structures of the holo BAZ2A bromodomain and analyze common bromodomain/ligand motifs and favorable intraligand interactions. Binding of some of the compounds is enantiospecific, with affinity in the low micromolar range. The most potent ligand has an equilibrium dissociation constant of 7 μM and a good selectivity over the paralog BAZ2B bromodomain.
- Published
- 2022
3. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of
- Author
-
Mariachiara, Micaelli, Andrea, Dalle Vedove, Linda, Cerofolini, Jacopo, Vigna, Denise, Sighel, Sara, Zaccara, Isabelle, Bonomo, Georgios, Poulentzas, Emanuele Filiberto, Rosatti, Giulia, Cazzanelli, Laura, Alunno, Romina, Belli, Daniele, Peroni, Erik, Dassi, Shino, Murakami, Samie R, Jaffrey, Marco, Fragai, Ines, Mancini, Graziano, Lolli, Alessandro, Quattrone, and Alessandro, Provenzani
- Abstract
YTHDF proteins bind the
- Published
- 2022
4. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N 6-Methyladenosine-Modified RNAs
- Author
-
Mariachiara Micaelli, Andrea Dalle Vedove, Linda Cerofolini, Jacopo Vigna, Denise Sighel, Sara Zaccara, Isabelle Bonomo, Georgios Poulentzas, Emanuele Filiberto Rosatti, Giulia Cazzanelli, Laura Alunno, Romina Belli, Daniele Peroni, Erik Dassi, Shino Murakami, Samie R. Jaffrey, Marco Fragai, Ines Mancini, Graziano Lolli, Alessandro Quattrone, and Alessandro Provenzani
- Subjects
Pharmacology ,epitranscriptomic modulators ,YTHDF structure ,N6-methyladenosine (m6A) ,ebselen analogs ,Pharmacology (medical) ,YTHDF binders ,ebselen - Published
- 2022
5. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin
- Author
-
Roberto Battistutta, Andrea Venerando, Maria Ruzzene, Stefano Dall'Acqua, Andrea Dalle Vedove, Francesca Zonta, Graziano Lolli, and Giorgio Cozza
- Subjects
Models, Molecular ,0301 basic medicine ,Curcumin ,animal structures ,Cell Survival ,Protein Data Bank (RCSB PDB) ,Antineoplastic Agents ,Context (language use) ,Biochemistry ,Ferulic acid ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Humans ,Prodrugs ,curcumin degradation ,Casein Kinase II ,Protein Kinase Inhibitors ,Molecular Biology ,Cells, Cultured ,Cell Proliferation ,X-ray crystallography ,chemistry.chemical_classification ,BRD4 bromodomain ,ferulic acid ,protein kinase CK2 ,Vanillin ,fungi ,Cell Biology ,Prodrug ,030104 developmental biology ,Enzyme ,chemistry ,Coniferyl aldehyde ,030220 oncology & carcinogenesis ,embryonic structures ,Drug Screening Assays, Antitumor - Abstract
Protein kinase CK2 is an antiapoptotic cancer-sustaining protein. Curcumin, reported previously as a CK2 inhibitor, is too bulky to be accommodated in the CK2 active site and rapidly degrades in solution generating various ATP-mimetic inhibitors; with a detailed comparative analysis, by means of both protein crystallography and enzymatic inhibition, ferulic acid was identified as the principal curcumin degradation product responsible for CK2 inhibition. The other curcumin derivatives vanillin, feruloylmethane and coniferyl aldehyde are weaker CK2 inhibitors. The high instability of curcumin in standard buffered solutions flags this compound, which is included in many commercial libraries, as a possible source of misleading interpretations, as was the case for CK2. Ferulic acid does not show any cytotoxicity and any inhibition of cellular CK2, due to its poor cellular permeability. However, curcumin acts as a prodrug in the cellular context, by generating its degradation products inside the treated cells, thus rescuing CK2 inhibition and consequently inducing cell death. Through the intracellular release of its degradation products, curcumin is expected to affect various target families; here, we identify the first bromodomain of BRD4 as a new target for those compounds. DATABASE: Structural data are available in the PDB database under the accession numbers 6HOP (CK2α/curcumin), 6HOQ (CK2α/ferulic acid), 6HOR (CK2α/feruloylmethane), 6HOT (CK2α/ferulic aldehyde), 6HOU (CK2α/vanillin) and 6HOV (BRD4/ferulic acid).
- Published
- 2019
6. Identification of compounds inhibiting prion replication and toxicity by removing PrPC from the cell surface
- Author
-
Pamela Gatto, Emiliano Biasini, Graziano Lolli, Michael Pancher, Maria Letizia Barreca, Andrea Astolfi, Claudia Stincardini, Silvia Biggi, Valentina Bonetto, Tania Massignan, Valentina Adami, Silvia Luotti, and Andrea Dalle Vedove
- Subjects
0301 basic medicine ,animal diseases ,Cell ,high-content screening ,Biochemistry ,Chemical library ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,chemistry.chemical_compound ,0302 clinical medicine ,In vivo ,Gene expression ,medicine ,prions ,Chemistry ,Neurodegeneration ,HEK 293 cells ,PrPC ,neurodegeneration ,medicine.disease ,N2a cell ,prion diseases ,nervous system diseases ,Cell biology ,030104 developmental biology ,medicine.anatomical_structure ,High-content screening ,hematein ,030217 neurology & neurosurgery - Abstract
The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.
- Published
- 2020
7. A novel class of selective CK2 inhibitors targeting its open hinge conformation
- Author
-
Roberto Battistutta, Giovanni Ribaudo, Stefania Sarno, Andrea Dalle Vedove, Giuseppe Zagotto, Francesca Zonta, Graziano Lolli, Nicola Demitri, Alberto Ongaro, Maria Ruzzene, Giulia Cazzanelli, and Enrico Zanforlin
- Subjects
Protein Conformation ,Stereochemistry ,Hinge ,Pyrimidinones ,Ring (chemistry) ,Jurkat Cells ,Structure-Activity Relationship ,Endocellular assay and mechanism of action ,Protein kinase CK2 ,Thiadiazoles ,Drug Discovery ,Structural isomer ,Side chain ,Humans ,Transferase ,Chemical synthesis and structural characterization ,Casein Kinase II ,Protein Kinase Inhibitors ,X-ray crystallography ,Pharmacology ,Kinase ,Chemistry ,Organic Chemistry ,General Medicine ,Molecular Docking Simulation ,Drug Design - Abstract
Protein kinase CK2 sustains cancer growth, especially in hematological malignancies. Its inhibitor SRPIN803, based on a 6-methylene-5-imino-1,3,4-thiadiazolopyrimidin-7-one scaffold, showed notable specificity. Our synthesis of the initially proposed SRPIN803 resulted in its constitutional isomer SRPIN803-revised, where the 2-cyano-2-propenamide group does not cyclise and fuse to the thiadiazole ring. Its crystallographic structure in complex with CK2α identifies the structural determinants of the reported specificity. SRPIN803-revised explores the CK2 open hinge conformation, extremely rare among kinases, also interacting with side chains from this region. Its optimization lead to the more potent compound 4, which inhibits endocellular CK2, significantly affects viability of tumour cells and shows remarkable selectivity on a panel of 320 kinases.
- Published
- 2020
8. Structure-Based Virtual Screening Allows the Identification of Efficient Modulators of E-Cadherin-Mediated Cell–Cell Adhesion
- Author
-
Tommaso Prosdocimi, Aurélie Dobric, Andrea Cavalli, Archimede Torretta, Giovanni Paolo Di Martino, Emilio Parisini, Véronique Rigot, Stefano Donini, Sébastien Germain, Federico Falchi, Andrea Dalle Vedove, Chiara Vettraino, Frédéric André, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Centre de Recherches en Oncologie biologique et Oncopharmacologie (CRO2), Aix Marseille Université (AMU)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Chemistry, University of Cambridge [UK] (CAM), Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Istituto Italiano di Tecnologia (IIT), University of Bologna/Università di Bologna, Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, and Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)
- Subjects
Protein Conformation ,[SDV]Life Sciences [q-bio] ,Cell ,Druggability ,Crystallography, X-Ray ,P-cadherin ,lcsh:Chemistry ,0302 clinical medicine ,Tumor Cells, Cultured ,RNA, Small Interfering ,lcsh:QH301-705.5 ,Spectroscopy ,0303 health sciences ,Chemistry ,Drug discovery ,General Medicine ,Adhesion ,Cadherins ,cell invasion ,3. Good health ,Computer Science Applications ,Cell biology ,Molecular Docking Simulation ,inhibitor ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,RNA Interference ,structure-based virtual screening ,Morphogenesis ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Molecular Dynamics Simulation ,Catalysis ,Article ,Inorganic Chemistry ,03 medical and health sciences ,Antigens, CD ,Spheroids, Cellular ,medicine ,Humans ,Neoplasm Invasiveness ,Physical and Theoretical Chemistry ,Cell adhesion ,Molecular Biology ,030304 developmental biology ,Virtual screening ,Cadherin ,Organic Chemistry ,E-cadherin ,cell adhesion ,Pancreatic Neoplasms ,lcsh:Biology (General) ,lcsh:QD1-999 ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell&ndash, cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell&ndash, cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell&ndash, cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.
- Published
- 2019
9. Identification of compounds inhibiting prion replication and toxicity by removing PrP
- Author
-
Silvia, Biggi, Michael, Pancher, Claudia, Stincardini, Silvia, Luotti, Tania, Massignan, Andrea, Dalle Vedove, Andrea, Astolfi, Pamela, Gatto, Graziano, Lolli, Maria Letizia, Barreca, Valentina, Bonetto, Valentina, Adami, and Emiliano, Biasini
- Subjects
Cell Survival ,Prions ,Cell Membrane ,Green Fluorescent Proteins ,Drug Evaluation, Preclinical ,Gene Expression ,Harmaline ,Tacrolimus ,Mice ,Neuroblastoma ,HEK293 Cells ,Quinacrine ,Cell Line, Tumor ,Animals ,Humans ,PrPC Proteins ,Casein Kinase II ,Hematoxylin ,Fluorescent Dyes - Abstract
The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrP
- Published
- 2019
10. Crystal Structure of Human E-Cadherin-EC1EC2 in Complex with a Peptidomimetic Competitive Inhibitor of Cadherin Homophilic Interaction
- Author
-
Emilio Parisini, Roberto Fanelli, Valentina Nardone, A.P. Lucarelli, Laura Belvisi, Andrea Dalle Vedove, Antonella Tomassetti, and Monica Civera
- Subjects
Models, Molecular ,0301 basic medicine ,Peptidomimetic ,Druggability ,Crystal structure ,Crystallography, X-Ray ,Binding, Competitive ,Structure-Activity Relationship ,03 medical and health sciences ,0302 clinical medicine ,Antigens, CD ,Drug Discovery ,Extracellular ,Humans ,Cell adhesion ,Molecular Structure ,Chemistry ,Cadherin ,Adhesion ,Cadherins ,Transmembrane protein ,3. Good health ,Cell biology ,030104 developmental biology ,030220 oncology & carcinogenesis ,Molecular Medicine ,Peptidomimetics - Abstract
Cadherins are transmembrane cell adhesion proteins whose aberrant expression often correlates with cancer development and proliferation. We report the crystal structure of an E-cadherin extracellular fragment in complex with a peptidomimetic compound that was previously shown to partially inhibit cadherin homophilic adhesion. The structure reveals an unexpected binding mode and allows the identification of a druggable cadherin interface, thus paving the way to a future structure-guided design of cell adhesion inhibitors against cadherin-expressing solid tumors.
- Published
- 2016
11. Crystal structure of the deglycating enzyme Amadoriase I in its free form and substrate-bound complex
- Author
-
Andrea Dalle Vedove, Alfonso Gautieri, Emilio Parisini, A.P. Lucarelli, Simone Vesentini, and Federica Rigoldi
- Subjects
0301 basic medicine ,Protein deglycation ,030102 biochemistry & molecular biology ,Molecular model ,Stereochemistry ,Chemistry ,Context (language use) ,Ligand (biochemistry) ,Biochemistry ,Enzyme structure ,03 medical and health sciences ,030104 developmental biology ,Protein structure ,Structural biology ,Structural Biology ,Protein crystallization ,Molecular Biology - Abstract
Amadoriases, also known as fructosyl amine oxidases (FAOX), are enzymes that catalyze the de-glycosylation of fructosyl amino acids. As such, they are excellent candidates for the development of enzyme-based diagnostic and therapeutic tools against age- and diabetes-induced protein glycation. However, mostly because of the lack of a complete structural characterization of the different members of the family, the molecular bases of their substrate specificity have yet to be fully understood. The high resolution crystal structures of the free and the substrate-bound form of Amadoriase I shown herein allow for the identification of key structural features that account for the diverse substrate specificity shown by this class of enzymes. This is of particular importance in the context of the rather limited and partially incomplete structural information that has so far been available in the literature on the members of the FAOX family. Moreover, using molecular dynamics simulations, we describe the tunnel conformation and the free energy profile experienced by the ligand in going from bulk water to the catalytic cavity, showing the presence of four gating helices/loops, followed by an "L-shaped" narrow cavity. In summary, the tridimensional architecture of Amadoriase I presented herein provides a reference structural framework for the design of novel enzymes for diabetes monitoring and protein deglycation. Proteins 2016; 84:744-758. © 2016 Wiley Periodicals, Inc.
- Published
- 2016
12. Structural Analysis of Small-Molecule Binding to the BAZ2A and BAZ2B Bromodomains
- Author
-
Vito Giuseppe D'Agostino, Dimitrios Spiliotopoulos, Andrea Dalle Vedove, Cristina Nevado, Jean-Rémy Marchand, Andrea Unzue, Amedeo Caflisch, Graziano Lolli, University of Zurich, and Lolli, Graziano
- Subjects
10120 Department of Chemistry ,0301 basic medicine ,Male ,1303 Biochemistry ,Subfamily ,Chromosomal Proteins, Non-Histone ,in silico screening ,Crystallography, X-Ray ,Ligands ,01 natural sciences ,Biochemistry ,Drug Discovery ,Side chain ,BAZ2 bromodomains ,Moiety ,General Pharmacology, Toxicology and Pharmaceutics ,Crystallography ,3002 Drug Discovery ,competition binding assays ,prostate cancer ,X-ray crystallography ,Antineoplastic Agents ,Humans ,Molecular Docking Simulation ,Prostatic Neoplasms ,Protein Binding ,Protein Domains ,Proteins ,Small Molecule Libraries ,3. Good health ,Chromosomal Proteins ,3004 Pharmacology ,Molecular Medicine ,Transcription Factors, General ,Stereochemistry ,610 Medicine & health ,3000 General Pharmacology, Toxicology and Pharmaceutics ,03 medical and health sciences ,10019 Department of Biochemistry ,Molecule ,Binding site ,Pharmacology ,010405 organic chemistry ,Organic Chemistry ,Non-Histone ,0104 chemical sciences ,Bromodomain ,030104 developmental biology ,Acetylation ,1313 Molecular Medicine ,X-Ray ,570 Life sciences ,biology ,Small molecule binding ,1605 Organic Chemistry - Abstract
The bromodomain-containing protein BAZ2A is a validated target in prostate cancer research, whereas the function of its paralogue BAZ2B is still undefined. The bromodomains of BAZ2A and BAZ2B have a similar binding site for their natural ligand, the acetylated lysine side chain. Here, we present an analysis of the binding modes of eight compounds belonging to three distinct chemical classes. For all compounds, the moiety mimicking the natural ligand engages in essentially identical interactions in the BAZ2A and BAZ2B bromodomains. In contrast, the rest of the molecule is partially solvent-exposed and adopts different orientations with different interactions in the two bromodomains. Some of these differences could be exploited for designing inhibitors with selectivity within the BAZ2 bromodomain subfamily.
- Published
- 2018
13. Tracking Fluorescent Polyoxometalates within Cells
- Author
-
Marcella Bonchio, Chiara Maccato, Andrea Dalle Vedove, Elsa Fabbretti, Hadigheh Sadat Hosseini, Tatiana Da Ros, Mauro Carraro, Gloria Modugno, Modugno, Gloria, Fabbretti, Elsa, Dalle Vedove, Andrea, Da Ros, Tatiana, Maccato, Chiara, Hosseini, Hadigheh Sadat, Bonchio, Marcella, and Carraro, Mauro
- Subjects
010405 organic chemistry ,Chemistry ,Hybrid polyoxometalates ,Chirality ,Fluorescence ,Drug delivery ,Inorganic Chemistry ,Nanotechnology ,010402 general chemistry ,Tracking (particle physics) ,01 natural sciences ,0104 chemical sciences ,Hybrid polyoxometalate - Abstract
Novel organic‐inorganic polyoxometalates (POMs) decorated with covalent fluorescent tags have been designed for cell internalization. Their localization within model HEK cells is readily accomplished by confocal fluorescence microscopy. While cell internalization is dictated by the formation of the amphiphilic POM‐based nanostructures, their cytoplasmic‐nuclear trafficking appears to be regulated by a subtle interplay of the organic‐inorganic domains of the nanoassemblies which, in turn, impacts their dynamic behavior and capability to interact with cell membranes.
- Published
- 2018
14. Discovery of Inhibitors of Four Bromodomains by Fragment-Anchored Ligand Docking
- Author
-
Andrea Dalle Vedove, Jean-Rémy Marchand, Graziano Lolli, Amedeo Caflisch, University of Zurich, and Caflisch, Amedeo
- Subjects
0301 basic medicine ,Chemistry (all) ,Chemical Engineering (all) ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Library and Information Sciences ,General Chemical Engineering ,In silico ,610 Medicine & health ,1600 General Chemistry ,Ligands ,Molecular Docking Simulation ,Models, Biological ,Small Molecule Libraries ,03 medical and health sciences ,Protein Domains ,Drug Discovery ,10019 Department of Biochemistry ,1706 Computer Science Applications ,Humans ,Histone Chaperones ,1500 General Chemical Engineering ,Histone Acetyltransferases ,Virtual screening ,Binding Sites ,Chemistry ,Drug discovery ,Ligand binding assay ,Nuclear Proteins ,Water ,General Chemistry ,Combinatorial chemistry ,Peptide Fragments ,Computer Science Applications ,Bromodomain ,030104 developmental biology ,Docking (molecular) ,570 Life sciences ,biology ,3309 Library and Information Sciences - Abstract
The high-throughput docking protocol called ALTA-VS (anchor-based library tailoring approach for virtual screening) was developed in 2005 for the efficient in silico screening of large libraries of compounds by preselection of only those molecules that have optimal fragments (anchors) for the protein target. Here we present an updated version of ALTA-VS with a broader range of potential applications. The evaluation of binding energy makes use of a classical force field with implicit solvent in the continuum dielectric approximation. In about 2 days per protein target on a 96-core compute cluster (equipped with Xeon E3-1280 quad core processors at 2.5 GHz), the screening of a library of nearly 77 000 diverse molecules with the updated ALTA-VS protocol has resulted in the identification of 19, 3, 3, and 2 μM inhibitors of the human bromodomains ATAD2, BAZ2B, BRD4(1), and CREBBP, respectively. The success ratio (i.e., number of actives in a competition binding assay in vitro divided by the number of compounds tested) ranges from 8% to 13% in dose-response measurements. The poses predicted by fragment-based docking for the three ligands of the BAZ2B bromodomain were confirmed by protein X-ray crystallography.
- Published
- 2017
15. Моделювання методом молекулярної динаміки для аналізу структури і функцій ферментів Amadoriase
- Author
-
Emilio Parisini, Alfonso Gautieri, Ludovica Spero, Alberto Redaelli, Federica Rigoldi, and Andrea Dalle Vedove
- Subjects
0301 basic medicine ,зв’язувальні взаємодії ,дегликированные ферменты ,глікований гемоглобін ,binding interactions ,моделирование методом молекулярной динамики ,deglycating enzymes ,Computational biology ,моделювання методом молекулярної динаміки ,Turn (biochemistry) ,мониторинг HbA1c ,03 medical and health sciences ,Molecular dynamics ,оксидаза фруктозиламинокислоты ,гликированный гемоглобин ,амадоріази ,моніторинг HbA1c ,glycated haemoglobin ,Homology modeling ,моніторинг діабету ,мониторинг диабета ,enzyme specificity ,оксидаза фруктозиламінокислоти ,diabetes monitoring ,специфичность фермента ,Chemistry ,Rational design ,дегліковані ферменти ,связывающие взаимодействия ,General Medicine ,Ligand (biochemistry) ,специфічність ферменту ,fructosyl amino acid oxidase ,Enzyme structure ,Folding (chemistry) ,амадориазы ,030104 developmental biology ,molecular dynamics simulation ,HbA1c monitoring ,amadoriases ,577.151 ,Function (biology) - Abstract
Проблематика. Аналіз ферментативної активності, що базується на використанні оксидаз фруктозиламінокислот (FAOX), являє собою швидку, економічну і з великим потенціалом стратегію для вимірювання глікованого гемоглобіну (HbA1c), який своєю чергою є надійним маркером для моніторингу виникнення і розвитку цукрового діабету. Однак розробка природного FAOX конкретно для розпізнавання фруктозил-валіну (глікованого N-кінцевого залишку HbA1c) ускладнювалася нестачею інформації про тривимірні структури і каталітичні залишки різних FAOX, які існують у природі, і про молекулярні механізми, які регулюють специфічність у цьому класі ферментів, загалом. Мета дослідження. Ми використовуємо моделювання методом молекулярної динаміки, а також сучасні методи моделювання для дослідження п’яти різних відповідних FAOX немутантного типу (Amadoriase I, Amadoriase II, PnFPOX, FPOX-E і N1-1-FAOD), щоб з’ясувати молекулярні механізми, які обумовлюють їх специфічність до полярних і неполярних субстратів. Зокрема, ми порівнюємо п’ять FAOX з точки зору загальної складчастості, вхідного тунелю ліганду, лігандзв’язувальних залишків і енергій зв’язку лігандів. Методика реалізації. Ми використовували гомологічне моделювання в поєднанні з моделюванням методом молекулярної динаміки, щоб дати уявлення про структурну різниці між п’ятьма ферментами родини FAOX. Результати дослідження. Спочатку ми спрогнозували структуру ферментів N1-1-FAOD і PnFPOX з використанням гомологічного моделювання. Потім ми використовували моделі та експериментальні кристалічні структури Amadoriase I, Amadoriase II і FPOX-E для обширного молекулярно-динамічного моделювання, щоб порівняти структури цих ферментів FAOX і оцінити їх відповідні взаємозв’язки з лігандами f-val і f-lys. Висновки. Наша робота буде використовуватись для майбутніх модифікацій структури ферментів з метою раціонального проектування нових біосенсорів для контролю рівня глюкози в крові. Background. Enzymatic assays based on Fructosyl Amino Acid Oxidases (FAOX) represent a potential, rapid and economical strategy to measure glycated hemoglobin (HbA1c), which is in turn a reliable method to monitor the insurgence and the development of diabetes mellitus. However, the engineering of naturally occurring FAOX to specifically recognize fructosyl-valine (the glycated N-terminal residue of HbA1c) has been hindered by the paucity of information on the tridimensional structures and catalytic residues of the different FAOX that exist in nature, and in general on the molecular mechanisms that regulate specificity in this class of enzymes. Objective. In this study, we use molecular dynamics simulations and advanced modeling techniques to investigate five different relevant wild-type FAOX (Amadoriase I, Amadoriase II, PnFPOX, FPOX-E and N1-1-FAOD) in order to elucidate the molecular mechanisms that drive their specificity towards polar and nonpolar substrates. Specifically, we compare these five different FAOX in terms of overall folding, ligand entry tunnel, ligand binding residues and ligand binding energies. Methods. We used a combination of homology modeling and molecular dynamics simulations to provide insights into the structural difference between the five enzymes of the FAOX family. Results. We first predicted the structure of the N1-1-FAOD and PnFPOX enzymes using homology modelling. Then, we used these models and the experimental crystal structures of Amadoriase I, Amadoriase II and FPOX-E to run extensive molecular dynamics simulations in order to compare the structures of these FAOX enzymes and assess their relevant interactions with two relevant ligands, f-val and f-lys. Conclusions. Our work will contribute to future enzyme structure modifications aimed at the rational design of novel biosensors for the monitoring of blood glucose levels. Проблематика. Анализ ферментативной активности, основанный на использовании оксидаз фруктозиламинокислот (FAOX), представляет собой быструю, экономичную и с большим потенциалом стратегию для измерения гликированного гемоглобина (HbA1c), который в свою очередь является надежным маркером для мониторинга возникновения и развития сахарного диабета. Однако разработка естественного FAOX конкретно для распознавания фруктозил-валина (гликированного N-концевого остатка HbA1c) усложнялась недостатком информации о трехмерных структурах и каталитических остатках различных FAOX, которые существуют в природе, и о молекулярных механизмах, которые регулируют специфичность в этом классе ферментов, в общем. Цель исследования. Мы используем моделирование методом молекулярной динамики, а также современные методы моделирования для исследования пяти различных соответствующих FAOX немутантного типа (Amadoriase I, Amadoriase II, PnFPOX, FPOX-E и N1-1-FAOD), чтобы выяснить молекулярные механизмы, которые обуславливают их специфичность к полярным и неполярным субстратам. В частности, мы сравниваем пять FAOX с точки зрения общей складчатости, входного туннеля лиганда, лигандсвязывающих остатков и энергий связи лигандов. Методика реализации. Мы использовали гомологичное моделирование в сочетании с моделированием методом молекулярной динамики, чтобы дать представление о структурной разнице между пятью ферментами семейства FAOX. Результаты исследований. Сначала мы спрогнозировали структуру ферментов N1-1-FAOD и PnFPOX с использованием гомологичного моделирования. Затем мы использовали модели и экспериментальные кристаллические структуры Amadoriase I, Amadoriase II и FPOX-E для обширного молекулярно-динамического моделирования, чтобы сравнить структуры этих ферментов FAOX и оценить их соответствующие взаимосвязи с лигандами f-val и f-lys. Выводы. Наша работа будет использоваться для будущих модификаций структуры ферментов с целью рационального проектирования новых биосенсоров для контроля уровня глюкозы в крови.
- Published
- 2017
16. Molecular dynamics simulations provide insights into the substrate specificity of FAOX family members
- Author
-
Alberto Redaelli, Alfonso Gautieri, Federica Rigoldi, Ludovica Spero, Andrea Dalle Vedove, and Emilio Parisini
- Subjects
0301 basic medicine ,Biotechnology ,Molecular Biology ,Molecular Conformation ,Molecular Dynamics Simulation ,Ligands ,Conserved sequence ,Substrate Specificity ,Turn (biochemistry) ,03 medical and health sciences ,Molecular dynamics ,Structure-Activity Relationship ,Structure–activity relationship ,Amino Acid Sequence ,Conserved Sequence ,Phylogeny ,Chemistry ,Rational design ,Hydrogen Bonding ,Ligand (biochemistry) ,Enzyme structure ,Folding (chemistry) ,030104 developmental biology ,Biochemistry ,Multigene Family ,Salts ,Amino Acid Oxidoreductases ,Hydrophobic and Hydrophilic Interactions - Abstract
Enzymatic assays based on Fructosyl Amino Acid Oxidases (FAOX) represent a potential, rapid and economical strategy to measure glycated hemoglobin (HbA1c), which is in turn a reliable method to monitor the insurgence and the development of diabetes mellitus. However, the engineering of naturally occurring FAOX to specifically recognize fructosyl-valine (the glycated N-terminal residue of HbA1c) has been hindered by the paucity of information on the tridimensional structures and catalytic residues of the different FAOX that exist in nature, and in general on the molecular mechanisms that regulate specificity in this class of enzymes. In this study, we use molecular dynamics simulations and advanced modeling techniques to investigate five different relevant wild-type FAOX (Amadoriase I, Amadoriase II, PnFPOX, FPOX-E and N1-1-FAOD) in order to elucidate the molecular mechanisms that drive their specificity towards polar and nonpolar substrates. Specifically, we compare these five different FAOX in terms of overall folding, ligand entry tunnels, ligand binding residues and ligand binding energies. Our work will contribute to future enzyme structure modifications aimed at the rational design of novel biosensors for the monitoring of blood glucose levels.
- Published
- 2016
17. The X-ray structure of human P-cadherin EC1-EC2 in a closed conformation provides insight into the type I cadherin dimerization pathway
- Author
-
Angelica Matino, Valentina Nardone, Emilio Parisini, A.P. Lucarelli, and Andrea Dalle Vedove
- Subjects
Cadherin ,Stereochemistry ,Protein Conformation ,Molecular Sequence Data ,Biophysics ,Morphogenesis ,Sequence (biology) ,Crystal structure ,Biology ,Type (model theory) ,Condensed Matter Physics ,Closed conformation ,Cadherins ,Crystallography, X-Ray ,Biochemistry ,Protein Structure, Secondary ,Research Communications ,Protein Structure, Tertiary ,Structural Biology ,Aspartic acid ,Genetics ,Humans ,Amino Acid Sequence ,Protein Multimerization ,Cell adhesion - Abstract
Cadherins are a large family of calcium-dependent proteins that mediate cellular adherens junction formation and tissue morphogenesis. To date, the most studied cadherins are those classified as classical, which are further divided into type I or type II depending on selected sequence features. Unlike other members of the classical cadherin family, a detailed structural characterization of P-cadherin has not yet been fully obtained. Here, the high-resolution crystal structure determination of the closed form of human P-cadherin EC1-EC2 is reported. The structure shows a novel, monomeric packing arrangement that provides a further snapshot in the yet-to-be-achieved complete description of the highly dynamic cadherin dimerization pathway. Moreover, this is the first multidomain cadherin fragment to be crystallized and structurally characterized in its closed conformation that does not carry any extra N-terminal residues before the naturally occurring aspartic acid at position 1. Finally, two clear alternate conformations are observed for the critical Trp2 residue, suggestive of a transient, metastable state. The P-cadherin structure and packing arrangement shown here provide new and valuable information towards the complete structural characterization of the still largely elusive cadherin dimerization pathway.
- Published
- 2015
18. Control of the chemiluminescence spectrum with porous Bragg mirrors
- Author
-
Eduardo Aluicio-Sarduy, Luca Passoni, Luigino Criante, Fabio Di Fonzo, Andrea Dalle Vedove, Guglielmo Lanzani, Simone Varo, and Francesco Scotognella
- Subjects
Condensed Matter - Materials Science ,Materials science ,business.industry ,Physics::Optics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Distributed Bragg reflector ,Yablonovite ,Psychiatry and Mental health ,chemistry.chemical_compound ,Optics ,Stack (abstract data type) ,chemistry ,Optoelectronics ,Light emission ,Emission spectrum ,Photonics ,business ,Rubrene ,Photonic crystal - Abstract
Tunable, battery free light emission is demonstrated in a solid state device that is compatible with lab on a chip technology and easily fabricated via solution processing techniques. A porous one dimensional (1D) photonic crystal (also called Bragg stack or mirror) is infiltrated by chemiluminescence rubrene-based reagents. The Bragg mirror has been designed to have the photonic band gap overlapping with the emission spectrum of rubrene. The chemiluminescence reaction occurs in the intrapores of the photonic crystal and the emission spectrum of the dye is modulated according to the photonic band gap position. This is a compact, powerless emitting source that can be exploited in disposable photonic chip for sensing and point of care applications., Comment: 8 pages, 3 figures
- Published
- 2014
- Full Text
- View/download PDF
19. Cover Image, Volume 84, Issue 6
- Author
-
Federica Rigoldi, Alfonso Gautieri, Andrea Dalle Vedove, Anna Paola Lucarelli, Simone Vesentini, and Emilio Parisini
- Subjects
Structural Biology ,Molecular Biology ,Biochemistry - Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.