1. Operator perturbation for fourth order elliptic equations with variable coefficients
- Author
-
Orlik, Julia, Andrä, Heiko, and Staub, Sarah
- Subjects
Mathematics - Numerical Analysis ,Mathematics - Operator Algebras ,35B27, 35J86, 47H05 - Abstract
The homogenization of elliptic divergence-type fourth-order operators with periodic coefficients is studied in a (periodic) domain. The aim is to find an operator with constant coefficients and represent the equation through a perturbation around this operator. The resolvent is found as $L^2 \to L^2$ operator using the Neumann series for the periodic fundamental solution of biharmonic operator. Results are based on some auxiliary Lemmas suggested by Bensoussan in 1986, Zhikov in 1991, Yu. Grabovsky and G. Milton in 1998, Pastukhova in 2016. Operators of the type considered in the paper appear in the study of the elastic properties of thin plates. The choice of the operator with constant coefficients is discussed separately and chosen in an optimal way w.r.t. the spectral radius and convergence of the Neumann series and uses the known bounds for ''homogenized'' coefficients. Similar ideas are usually applied for the construction of preconditioners for iterative solvers for finite dimensional problems resulting from discretized PDEs. The method presented is similar to Cholesky factorization transferred to elliptic operators (as in references mentioned above). Furthermore, the method can be applied to non-linear problems., Comment: it was publishe in conference proceedings in 2019, see the reference below
- Published
- 2024