170,974 results on '"Anderson P."'
Search Results
2. BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification
- Author
-
Anderson P. Avila Santos, Breno L. S. de Almeida, Robson P. Bonidia, Peter F. Stadler, Polonca Stefanic, Ines Mandic-Mulec, Ulisses Rocha, Danilo S. Sanches, and André C.P.L.F. de Carvalho
- Subjects
Non-coding RNA ,deep learning ,neural networks ,RNA identification ,feature extraction ,model performance ,Genetics ,QH426-470 - Abstract
ABSTRACTThe accurate classification of non-coding RNA (ncRNA) sequences is pivotal for advanced non-coding genome annotation and analysis, a fundamental aspect of genomics that facilitates understanding of ncRNA functions and regulatory mechanisms in various biological processes. While traditional machine learning approaches have been employed for distinguishing ncRNA, these often necessitate extensive feature engineering. Recently, deep learning algorithms have provided advancements in ncRNA classification. This study presents BioDeepFuse, a hybrid deep learning framework integrating convolutional neural networks (CNN) or bidirectional long short-term memory (BiLSTM) networks with handcrafted features for enhanced accuracy. This framework employs a combination of k-mer one-hot, k-mer dictionary, and feature extraction techniques for input representation. Extracted features, when embedded into the deep network, enable optimal utilization of spatial and sequential nuances of ncRNA sequences. Using benchmark datasets and real-world RNA samples from bacterial organisms, we evaluated the performance of BioDeepFuse. Results exhibited high accuracy in ncRNA classification, underscoring the robustness of our tool in addressing complex ncRNA sequence data challenges. The effective melding of CNN or BiLSTM with external features heralds promising directions for future research, particularly in refining ncRNA classifiers and deepening insights into ncRNAs in cellular processes and disease manifestations. In addition to its original application in the context of bacterial organisms, the methodologies and techniques integrated into our framework can potentially render BioDeepFuse effective in various and broader domains.
- Published
- 2024
- Full Text
- View/download PDF
3. Sensation in Gamification: A Qualitative Investigation of Background Music in Gamified Learning
- Author
-
José Alexandre de Freitas, Mateus Oliveira, Carlos Martinelli, Fernando Amorim, Armando M. Toda, Paula Palomino, Ana C. T. Klock, Guilherme Guerino, Anderson P. Avila-Santos, and Luiz Rodrigues
- Subjects
Gamification ,Education ,Sensation ,Music ,ChatGPT ,Computer software ,QA76.75-76.765 ,Computer engineering. Computer hardware ,TK7885-7895 - Abstract
Gamification in education has received significant attention for its potential to enhance student engagement and motivation. However, challenges arise from the excessive use of reward-oriented game elements, which are assumed to have negative effects on learning outcomes in many cases. In contrast, while the literature argues immersion-based gamification holds great potential, there is little research on how such an approach affects learning experiences. The Sensation game element, for instance, might contribute to students' experiences by providing sensory queues, such as auditory feedback based on background music, to foster concentration, engagement, and immersive learning experiences. Nevertheless, past studies have not sufficiently investigated how the Sensation game element affects gamified learning experiences. Therefore, this paper implements the Sensation game element in two studies: Study 1 introduced background music during a reading activity, while Study 2 implemented multiple background music tracks aligned with different learning stages to drive students' experiences. Accordingly, we evaluated this game element through usability tests, based on high-fidelity prototypes of online learning environments, followed by semi-structured interviews that were analyzed through thematic analysis with the help of ChatGPT. Overall, we found that Sensation, particularly instrumental music, positively influenced concentration but requires careful design to maintain engagement. The findings highlight the importance of tailoring Sensation's implementation to consider individual preferences and contextual factors and the need for thoughtful selection and management of sensory queues to optimize learning environments effectively. Additionally, we provide evidence emphasizing the value of using tools like ChatGPT to optimize qualitative data analysis, although human oversight remains prominent to ensure robust research outcomes. Overall, this study contributes insights for designing personalized and effective gamified learning experiences based on the Sensation game element in enhancing learning experiences.
- Published
- 2024
- Full Text
- View/download PDF
4. Examining Essential Factors on Student Performance and Satisfaction in Learning Business Analytics
- Author
-
Mandy Dang, Yulei Gavin Zhang, Susan Williams, and Joe Anderson
- Abstract
With businesses increasingly prioritizing data-driven decision making, the demand for business analysts is high and expected to grow. In response, many universities and institutions have developed courses and programs related to business analytics to prepare more graduates for careers in this field. Business analytics programs and educators consistently strive to achieve a high level of student learning success, ensuring competence in working in the business analytics field after graduation. In this study, we aim to examine key factors influencing student learning in business analytics, focusing on performance expectancy and satisfaction. We examined specific factors, including personal interest, career relevance expectancy, learning effort, and perceived course structure effectiveness, from perspectives related to both students and instructors. A research model was developed and empirically tested. The results showed that all factors significantly influenced both perceived academic performance and learning satisfaction. Additionally, personal interest and career relevance expectancy could significantly impact learning effort.
- Published
- 2024
5. Metrics. A Resource Guide for Home Economics. Final Report.
- Author
-
Indiana Univ. of Pennsylvania. and Anderson, Ruth
- Abstract
This guide is to be used as a resource for teaching metrics at various educational levels in the home economics program. The lessons are intended for flexible use by the teacher, and the contents can be adapted for use with varying abilities, ages, and teaching-learning situations. Categorized into ten units, each unit includes concepts, objectives, supportive learnings, sampling of experiences and evaluation, charts, and diagrams. The ten units are: (1) History of Measurement, (2) The International System of Units (SI), (3) The Metre (Length/Area), (4) The Litre (Volume/Capacity), (5) Grams and Kilograms (9) Using Metrics in Clothing Labs--Metric Chef's Hat, and (10) Windows and Window Treatment. The appendixes include: Metric Test, Metric for Preschoolers, Metric Doll (Elementary-Middle School), Introduction to Metrics (Transparency Series), Centimetre Grid, Games, and Bulletin Board Ideas. (HD)
- Published
- 2024
6. Pandemic Relief Spending and Recovery Strategies: Findings from a Survey of Community Colleges in Six States. ARCC Network Report
- Author
-
Community College Research Center (CCRC), Accelerating Recovery in Community Colleges (ARCC) Network, Serena C. Klempin, Sarah Griffin, Tia J. Monahan, Megan N. Anderson, and Thomas Brock
- Abstract
In order to assist higher education institutions and their students during the pandemic, the federal government established the Higher Education Emergency Relief (HEER) Fund, which directed over $75 billion to institutions of higher education--including nearly $25 billion to community colleges--over a three-year period. The U.S. Department of Education worked on a rapid timeline to distribute these funds to institutions, which they could use to provide direct aid to students facing financial challenges and cover institutional costs related to the pandemic. Drawing on a survey of community colleges in six states--California, Michigan, New York (State University of New York [SUNY] colleges), Ohio, Tennessee, and Texas--this report provides insight into the specific pandemic recovery activities colleges implemented, colleges' perceptions of how successful HEER funds were in addressing student and institutional needs during the pandemic, and colleges' views of unmet needs. The institutional survey was completed by 170 out of a total of 265 community colleges in the six states. Key findings from the report: (1) Colleges spent nearly all the HEER funds they received. Given the large amount of HEER funding and the fact that colleges did not need to submit a proposal and budget for how they would use the funds, it should not be assumed that colleges would have spent all the money they received. Yet colleges spent nearly all the funds they received by the time the HEER program ended in June 2023; (2) HEER funds met a variety of student and institutional needs during the pandemic. Colleges had relatively few problems using the funds and felt that the aid was successful in mitigating student and institutional hardships; (3) Colleges focused on retaining existing students; they employed a variety of methods to support students in need. Colleges used HEER funds to support and retain existing (pre-pandemic) students rather than to recruit new students. They focused on supporting students with financial exigencies, including those experiencing food and housing insecurity. They used institutional aid to forgive debt owed to the college and to provide food, housing, and childcare assistance; (4) Spending patterns suggest that colleges experienced similar challenges during the pandemic and often prioritized the same objectives. Despite differences in state contexts and institutional settings, colleges tended to allocate funds in similar ways. For example, most colleges used aid for campus safety and technology hardware. Expenditure patterns also shifted over time in similar ways, indicating that colleges were responsive to evolving needs; (5) Expenditures related to campus safety and technology remained strong but decreased in frequency over time; expenditures to support students' mental health increased in frequency. Mental health services was the only expenditure category that increased in frequency in each of the three years of funding, likely reflecting the toll the pandemic took on students' mental health; (6) Comparing pre- and post-pandemic spending, HEER funds had the most impact on increasing support for technology hardware, high-speed internet, and housing assistance. Colleges used HEER funds both to fund existing services and to begin offering new ones. Fewer than a third of colleges had services in place to provide technology hardware, high-speed internet, and housing assistance before the pandemic; many more did so afterward; (7) Concerns about the end of HEER funding and priorities for future funding expose a need for continued flexible resources to address students' financial needs. Colleges' main concern about the end of HEER funding was that it would limit their ability to support students during an emergency. Their top priority for using future funding was additional student aid; and (8) Rural and vocational/technical colleges (as defined by the Carnegie Classification) may have had fewer resources prior to the pandemic and may be in greater need of additional support. Colleges in towns and rural areas and colleges focused on technical training were less likely to offer a number of supports both pre- and post-pandemic. Rural colleges were also less likely to report having received additional funding for pandemic recovery from sources other than HEER funds. Overall, while the survey findings suggest that HEER largely met the goals for which it was intended, they also point to the importance of addressing systemic challenges facing community college students and the institutions that serve them. Now that the immediate crisis of the pandemic has passed and HEER funding has ended, there is an opportunity to think strategically about the investments that are needed to promote student success over the long term, particularly for underserved and financially vulnerable students who are the most at risk of stopping out or not enrolling in the first place.
- Published
- 2024
7. MarineMetagenomeDB: a public repository for curated and standardized metadata for marine metagenomes
- Author
-
Muhammad Kabiru Nata’ala, Anderson P. Avila Santos, Jonas Coelho Kasmanas, Alexander Bartholomäus, João Pedro Saraiva, Sandra Godinho Silva, Tina Keller-Costa, Rodrigo Costa, Newton C. M. Gomes, André Carlos Ponce de Leon Ferreira de Carvalho, Peter F. Stadler, Danilo Sipoli Sanches, and Ulisses Nunes da Rocha
- Subjects
Marine microbiomes ,Metagenomics ,Microbial ecology ,Metadata ,Database ,Environmental sciences ,GE1-350 ,Microbiology ,QR1-502 - Abstract
Abstract Background Metagenomics is an expanding field within microbial ecology, microbiology, and related disciplines. The number of metagenomes deposited in major public repositories such as Sequence Read Archive (SRA) and Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) is rising exponentially. However, data mining and interpretation can be challenging due to mis-annotated and misleading metadata entries. In this study, we describe the Marine Metagenome Metadata Database (MarineMetagenomeDB) to help researchers identify marine metagenomes of interest for re-analysis and meta-analysis. To this end, we have manually curated the associated metadata of several thousands of microbial metagenomes currently deposited at SRA and MG-RAST. Results In total, 125 terms were curated according to 17 different classes (e.g., biome, material, oceanic zone, geographic feature and oceanographic phenomena). Other standardized features include sample attributes (e.g., salinity, depth), sample location (e.g., latitude, longitude), and sequencing features (e.g., sequencing platform, sequence count). MarineMetagenomeDB version 1.0 contains 11,449 marine metagenomes from SRA and MG-RAST distributed across all oceans and several seas. Most samples were sequenced using Illumina sequencing technology (84.33%). More than 55% of the samples were collected from the Pacific and the Atlantic Oceans. About 40% of the samples had their biomes assigned as ‘ocean’. The ‘Quick Search’ and ‘Advanced Search’ tabs allow users to use different filters to select samples of interest dynamically in the web app. The interactive map allows the visualization of samples based on their location on the world map. The web app is also equipped with a novel download tool (on both Windows and Linux operating systems), that allows easy download of raw sequence data of selected samples from their respective repositories. As a use case, we demonstrated how to use the MarineMetagenomeDB web app to select estuarine metagenomes for potential large-scale microbial biogeography studies. Conclusion The MarineMetagenomeDB is a powerful resource for non-bioinformaticians to find marine metagenome samples with curated metadata and stimulate meta-studies involving marine microbiomes. Our user-friendly web app is publicly available at https://webapp.ufz.de/marmdb/ .
- Published
- 2022
- Full Text
- View/download PDF
8. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
9. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
10. Race-Conscious Admissions and Equal Protection in Higher Education. CRS Report R48043, Version 1
- Author
-
Library of Congress, Congressional Research Service (CRS) and April J. Anderson
- Abstract
In its 2023 decision in "Students for Fair Admissions v. Harvard," the Supreme Court effectively ended its approval of affirmative action in higher education admissions, holding that practices at Harvard and the University of North Carolina (UNC) were unlawful. The Court concluded that UNC's practices violated the guarantee of equal protection in the Fourteenth Amendment to the Constitution, which generally prohibits governmental racial discrimination. Additionally, while the Fourteenth Amendment's Equal Protection Clause applies directly only to state-run educational institutions, its nondiscrimination requirements apply equally to private colleges and universities that receive federal funds under Title VI of the Civil Rights Act of 1964 (Title VI), which prohibits recipients of federal dollars from discriminating on the basis of race. In "Students for Fair Admissions," the Court concluded that Harvard's affirmative action program violated this statutory provision for the same reasons that UNC's violated the Constitution. This report describes the evolution of the Supreme Court's voluntary affirmative action jurisprudence and the "Students for Fair Admissions" decision's implications. The report concludes by discussing the role that Title VI plays in ensuring equal protection in higher education, including several avenues for congressional action under the Act.
- Published
- 2024
11. ADAPTATION AND RESPONSIVENESS OF SUGARCANE CULTIVARS UNDER IRRIGATED AND RAINFED PRODUCTION SYSTEMS
- Author
-
Alexandre B. Dalri, Anderson P. Coelho, Vinícius C. da Silva, Rogério T. de Faria, and João A. Fischer Filho
- Subjects
Brix ,irrigation management ,technological quality ,yield ,Agriculture (General) ,S1-972 - Abstract
ABSTRACT Sugarcane is grown in several countries and environmental conditions, and production increases should not only be based on the expansion of the cultivated area. As water is a limiting factor for sugarcane yield, irrigation is crucial to increase its yields. Thus, this study aimed to evaluate the agronomic performance of five sugarcane cultivars under irrigated and rainfed conditions and compare yields in each treatment with those of previous cycles. The experiment was carried out from July 2017 to July 2018, which stands for the fourth sugarcane harvest. It consisted of two irrigation factors (irrigated and rainfed conditions), and five sugarcane cultivars (CTC4, IACSP93-3046, RB86-7515, IACSP95-5000, and IAC91-1099). Irrigation was applied to supply 100% of crop evapotranspiration. Irrigation increased sugarcane yields, and such increases varied with the genotype and crop cycle evaluated. In general, the cultivars most responsive to irrigation were IACSP93-3046 and IACSP95-5000, regardless of the evaluation cycle, and CTC4 from the fourth harvest onwards. Irrigation did not interfere with sugarcane technological quality if harvested after the middle of the crop season (June). Cultivars with higher tillering capacity, such as CTC4, had improved yield stability throughout the cycle when under irrigated conditions.
- Published
- 2021
- Full Text
- View/download PDF
12. Kidney functions adaptations of professional soccer players in response to an entire game season
- Author
-
RODRIGO A.S. PERES, IRNAK MARCELO BARBOSA, IGOR R. AROUCA, KAREN V. PAIVA, TAINÁ B. COUTINHO, VICTOR C. TADEU, ANDERSON P. MORALES, BEATRIZ G. RIBEIRO, NATÁLIA MARTINS FEITOSA, CINTIA M. DE BARROS, RODRIGO N. DA FONSECA, and JACKSON DE SOUZA-MENEZES
- Subjects
kidney functions ,soccer ,soccer players ,urea reabsorption ,Science - Abstract
Abstract This study investigated the renal function of soccer players after an entire game-season. Thirty-five athletes recruited to play for the Macae Futebol Clube were invited for this study, of which 18 athletes completed the entire game season. Blood and 24-hour urine were collected at the beginning (Pre-Season) and the end of the game season (Post-Season). Kidney functions were assessed by calculating the urinary excretion, clearance, and fractional excretion of the selected solutes. Plasma creatinine, sodium, total protein, and osmolality were lower in the Post-Season . In contrast, plasma urea was higher in the Post-Season period. Urinary excretion of urea was reduced while albumin excretion was higher in comparison to Pre-Season. The clearances of creatinine, total proteins, and albumin were higher in the Post-Season period. In accordance, the fractional excretion of albumin increased. On the other hand, the clearance and fractional excretion of urea was lower in the Post-Season period. These results show that soccer-associated exercise throughout the entire game-season induces kidney functions adaptations that may prevent dehydration in these athletes through increased urea reabsorption to conserve water. In addition, this data corroborates to increased glomerular permeability to plasma proteins, such as albumin, that soccer players may experience.
- Published
- 2022
- Full Text
- View/download PDF
13. Dimension Reduction via Sum-of-Squares and Improved Clustering Algorithms for Non-Spherical Mixtures
- Author
-
Anderson, Prashanti, Bafna, Mitali, Buhai, Rares-Darius, Kothari, Pravesh K., and Steurer, David
- Subjects
Computer Science - Data Structures and Algorithms ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
We develop a new approach for clustering non-spherical (i.e., arbitrary component covariances) Gaussian mixture models via a subroutine, based on the sum-of-squares method, that finds a low-dimensional separation-preserving projection of the input data. Our method gives a non-spherical analog of the classical dimension reduction, based on singular value decomposition, that forms a key component of the celebrated spherical clustering algorithm of Vempala and Wang [VW04] (in addition to several other applications). As applications, we obtain an algorithm to (1) cluster an arbitrary total-variation separated mixture of $k$ centered (i.e., zero-mean) Gaussians with $n\geq \operatorname{poly}(d) f(w_{\min}^{-1})$ samples and $\operatorname{poly}(n)$ time, and (2) cluster an arbitrary total-variation separated mixture of $k$ Gaussians with identical but arbitrary unknown covariance with $n \geq d^{O(\log w_{\min}^{-1})} f(w_{\min}^{-1})$ samples and $n^{O(\log w_{\min}^{-1})}$ time. Here, $w_{\min}$ is the minimum mixing weight of the input mixture, and $f$ does not depend on the dimension $d$. Our algorithms naturally extend to tolerating a dimension-independent fraction of arbitrary outliers. Before this work, the techniques in the state-of-the-art non-spherical clustering algorithms needed $d^{O(k)} f(w_{\min}^{-1})$ time and samples for clustering such mixtures. Our results may come as a surprise in the context of the $d^{\Omega(k)}$ statistical query lower bound [DKS17] for clustering non-spherical Gaussian mixtures. While this result is usually thought to rule out $d^{o(k)}$ cost algorithms for the problem, our results show that the lower bounds can in fact be circumvented for a remarkably general class of Gaussian mixtures., Comment: 64 pages
- Published
- 2024
14. Electron Phase Detection in Single Molecules by Interferometry
- Author
-
Chen, Zhixin, Deng, Jie-Ren, Wang, Mengyun, Farmakidis, Nikolaos, Baugh, Jonathan, Bhaskaran, Harish, Mol, Jan A., Anderson, Harry L., Bogani, Lapo, and Thomas, James O.
- Subjects
Physics - Chemical Physics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Interferometry has underpinned a century of discoveries, ranging from the disproval of the ether theory to the detection of gravitational waves, offering insights into wave dynamics with unrivalled precision through the measurement of phase relationships. In electronics, phase-sensitive measurements can probe the nature of transmissive topological and quantum states, but are only possible using complex device structures in magnetic fields. Here we demonstrate electronic interferometry in a single-molecule device through the study of non-equilibrium Fano resonances. We show the phase difference between an electronic orbital and a coupled Fabry-Perot resonance are tuneable through electric fields, and consequently it is possible to read out quantum information in the smallest devices, offering new avenues for the coherent manipulation down to single molecules.
- Published
- 2024
15. EHRs Data Harmonization Platform, an easy-to-use shiny app based on recodeflow for harmonizing and deriving clinical features
- Author
-
Aminoleslami, Arian, Anderson, Geoffrey M., and Chicco, Davide
- Subjects
Computer Science - Databases ,Computer Science - Digital Libraries - Abstract
Electronic health records (EHRs) contain important longitudinal information on individuals who have received medical care. Traditionally, EHRs have been used to support a wide range of administrative activities such as billing and clinical workflow, but, given the depth and breadth of clinical and demographic data they contain, they are increasingly being used to provide real-world data for research. Although EHR data have enormous research potential, the full realization of that potential requires a data management strategy that extracts from large EHR databases, that are collected from a range of care settings and time periods, well-documented research-relevant data that can be used by different researchers. Having a common well-documented data management strategy for EHR will support reproducible research and sharing documentation on research variables that are derived from EHR variables is important to open science. In this short paper, we describe the EHRs Data Harmonization Platform. The platform is based on an easy to use web app a publicly available at https://poxotn-arian-aminoleslami.shinyapps.io/Arian/ and as a standalone software package at https://github.com/ArianAminoleslami/EHRs-Data Harmonization-Platform, that is linked to an existing R library for data harmonization called recodeflow. The platform can be used to extract, document, and harmonize variables from EHR and it can also be used to document and share research variables that have been derived from those EHR data., Comment: 15 pages, 10 figures
- Published
- 2024
16. $^{11}$B states above the $\alpha$-decay threshold studied via $^{10}$B$(d,p){}^{11}$B
- Author
-
Kuchera, A. N., Ryan, G., Selby, G., Snider, D., Anderson, S., Almaraz-Calderon, S., Baby, L. T., Brown, B. A., Hanselman, K., Lopez-Saavedra, E., Macon, K. T., McCann, G. W., Kemper, K. W., Spieker, M., and Wiedenhöver, I.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The resonance region of $^{11}$B covering excitation energies from 8.4 MeV to 13.6 MeV was investigated with the $(d,p)$ reaction performed on an enriched $^{10}$B target at the Florida State University Super-Enge Split-Pole Spectrograph of the John D. Fox Superconducting Linear Accelerator Laboratory. Complementary measurements were performed with a target enriched in $^{11}$B to identify possible $^{12}$B contaminants in the $(d,p)$ reaction. Four strongly populated $^{11}$B states were observed above the $\alpha$-decay threshold. Angular distributions were measured and compared to DWBA calculations to extract angular momentum transfers and $^{10}\mathrm{B}\left(3^+\right)+n$ spectroscopic factors. The recently observed and heavily discussed resonance at 11.4 MeV in $^{11}$B was not observed in this work. This result is consistent with the interpretation that it is predominantly a $^{10}\mathrm{Be}\left(0^+\right)+p$ resonance with a possible additional $^{7}\mathrm{Li}+\alpha$ contribution. The predicted $^{10}\mathrm{B}\left(3^+\right)+n$ resonance at 11.6 MeV, analogous to the 11.4-MeV proton resonance, was not observed either. Upper limits for the $^{10}\mathrm{B}\left(3^+\right)+n$ spectroscopic factors of the 11.4-MeV and 11.6-MeV states were determined. In addition, supporting configuration interaction shell model calculations with the effective WBP interaction are presented., Comment: 7 pages, 3 figures, accepted for publication in Physical Review C as regular article
- Published
- 2024
17. A Non-Primordial Origin for the Widest Binaries in the Kuiper Belt
- Author
-
Campbell, Hunter M., Anderson, Kalee E., and Kaib, Nathan A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Nearly one-third of objects occupying the most circular, coplanar Kuiper belt orbits (the cold classical belt) are binary, and several percent of them are "ultra-wide" binaries (UWBs): 100-km-sized companions spaced by tens of thousands of km. UWBs are dynamically fragile, and their existence is thought to constrain early Solar System processes and conditions. However, we demonstrate that UWBs can instead attain their wide architectures well after the Solar System's earliest epochs, when Neptune's orbital migration implants the modern non-cold, or "dynamic", Kuiper belt population. During this implantation, cold classical belt binaries are likely to have close encounters with many planetesimals scattered across the region, which can efficiently dissociate any existing UWBs and widen a small fraction of tighter binaries into UWB-like arrangements. Thus, today's UWBs may not be primordial and cannot be used to constrain the early Solar System as directly as previously surmised., Comment: 27 pages, 12 figures
- Published
- 2024
- Full Text
- View/download PDF
18. Arithmetic Polygons and Sums of Consecutive Squares
- Author
-
Anderson, Jack, Woodall, Amy, and Zaharescu, Alexandru
- Subjects
Mathematics - Number Theory ,11B99 (primary) 11B25 (secondary) - Abstract
We introduce and study arithmetic polygons. We show that these arithmetic polygons are connected to triples of square pyramidal numbers. For every odd $N\geq3$, we prove that there is at least one arithmetic polygon with $N$ sides. We also show that there are infinitely many arithmetic polygons with an even number of sides., Comment: 22 pages, 6 figures, 2 tables
- Published
- 2024
19. NGTS-33b: A Young Super-Jupiter Hosted by a Fast Rotating Massive Hot Star
- Author
-
Alves, Douglas R., Jenkins, James S., Vines, Jose I., Battley, Matthew P., Lendl, Monika, Bouchy, François, Nielsen, Louise D., Gill, Samuel, Moyano, Maximiliano, Anderson, D. R., Burleigh, Matthew R., Casewell, Sarah L., Goad, Michael R., Hawthorn, Faith, Kendall, Alicia, McCormac, James, Osborn, Ares, Smith, Alexis M. S., Udry, Stephane, Wheatley, Peter J., Saha, Suman, Parc, Lena, Nigioni, Arianna, Apergis, Ioannis, and Ramsay, Gavin
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
In the last few decades planet search surveys have been focusing on solar type stars, and only recently the high-mass regimes. This is mostly due to challenges arising from the lack of instrumental precision, and more importantly, the inherent active nature of fast rotating massive stars. Here we report NGTS-33b (TOI-6442b), a super-Jupiter planet with mass, radius and orbital period of 3.6 $\pm$ 0.3 M$_{\rm jup}$, 1.64 $\pm$ 0.07 R$_{\rm jup}$ and $2.827972 \pm 0.000001$ days, respectively. The host is a fast rotating ($0.6654 \pm 0.0006$ day) and hot (T$_{\rm eff}$ = 7437 $\pm$ 72 K) A9V type star, with a mass and radius of 1.60 $\pm$ 0.11 M$_{\odot}$ and 1.47 $\pm$ 0.06 R$_{\odot}$, respectively. Planet structure and Gyrochronology models shows that NGTS-33 is also very young with age limits of 10-50 Myr. In addition, membership analysis points towards the star being part of the Vela OB2 association, which has an age of $\sim$ 20-35 Myr, thus providing further evidences about the young nature of NGTS-33. Its low bulk density of 0.19$\pm$0.03 g cm$^{-3}$ is 13$\%$ smaller than expected when compared to transiting hot Jupiters with similar masses. Such cannot be solely explained by its age, where an up to 15$\%$ inflated atmosphere is expected from planet structure models. Finally, we found that its emission spectroscopy metric is similar to JWST community targets, making the planet an interesting target for atmospheric follow-up. Therefore, NGTS-33b's discovery will not only add to the scarce population of young, massive and hot Jupiters, but will also help place further strong constraints on current formation and evolution models for such planetary systems., Comment: 19 pages, 17 figures, 7 tables, accepted for publication in MNRAS
- Published
- 2024
20. Towards Vision Mixture of Experts for Wildlife Monitoring on the Edge
- Author
-
Mensah, Emmanuel Azuh, Lee, Anderson, Zhang, Haoran, Shan, Yitong, and Heimerl, Kurtis
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The explosion of IoT sensors in industrial, consumer and remote sensing use cases has come with unprecedented demand for computing infrastructure to transmit and to analyze petabytes of data. Concurrently, the world is slowly shifting its focus towards more sustainable computing. For these reasons, there has been a recent effort to reduce the footprint of related computing infrastructure, especially by deep learning algorithms, for advanced insight generation. The `TinyML' community is actively proposing methods to save communication bandwidth and excessive cloud storage costs while reducing algorithm inference latency and promoting data privacy. Such proposed approaches should ideally process multiple types of data, including time series, audio, satellite images, and video, near the network edge as multiple data streams has been shown to improve the discriminative ability of learning algorithms, especially for generating fine grained results. Incidentally, there has been recent work on data driven conditional computation of subnetworks that has shown real progress in using a single model to share parameters among very different types of inputs such as images and text, reducing the computation requirement of multi-tower multimodal networks. Inspired by such line of work, we explore similar per patch conditional computation for the first time for mobile vision transformers (vision only case), that will eventually be used for single-tower multimodal edge models. We evaluate the model on Cornell Sap Sucker Woods 60, a fine grained bird species discrimination dataset. Our initial experiments uses $4X$ fewer parameters compared to MobileViTV2-1.0 with a $1$% accuracy drop on the iNaturalist '21 birds test data provided as part of the SSW60 dataset.
- Published
- 2024
21. PICZL: Image-based Photometric Redshifts for AGN
- Author
-
Roster, William, Salvato, Mara, Krippendorf, Sven, Saxena, Aman, Shirley, Raphael, Buchner, Johannes, Wolf, Julien, Dwelly, Tom, Bauer, Franz E., Aird, James, Ricci, Claudio, Assef, Roberto J., Anderson, Scott F., Liu, Xin, Merloni, Andrea, Weller, Jochen, and Nandra, Kirpal
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics ,Statistics - Machine Learning - Abstract
Computing photo-z for AGN is challenging, primarily due to the interplay of relative emissions associated with the SMBH and its host galaxy. SED fitting methods, effective in pencil-beam surveys, face limitations in all-sky surveys with fewer bands available, lacking the ability to capture the AGN contribution to the SED accurately. This limitation affects the many 10s of millions of AGN clearly singled out and identified by SRG/eROSITA. Our goal is to significantly enhance photometric redshift performance for AGN in all-sky surveys while avoiding the need to merge multiple data sets. Instead, we employ readily available data products from the 10th Data Release of the Imaging Legacy Survey for DESI, covering > 20,000 deg$^{2}$ with deep images and catalog-based photometry in the grizW1-W4 bands. We introduce PICZL, a machine-learning algorithm leveraging an ensemble of CNNs. Utilizing a cross-channel approach, the algorithm integrates distinct SED features from images with those obtained from catalog-level data. Full probability distributions are achieved via the integration of Gaussian mixture models. On a validation sample of 8098 AGN, PICZL achieves a variance $\sigma_{\textrm{NMAD}}$ of 4.5% with an outlier fraction $\eta$ of 5.6%, outperforming previous attempts to compute accurate photo-z for AGN using ML. We highlight that the model's performance depends on many variables, predominantly the depth of the data. A thorough evaluation of these dependencies is presented in the paper. Our streamlined methodology maintains consistent performance across the entire survey area when accounting for differing data quality. The same approach can be adopted for future deep photometric surveys such as LSST and Euclid, showcasing its potential for wide-scale realisation. With this paper, we release updated photo-z (including errors) for the XMM-SERVS W-CDF-S, ELAIS-S1 and LSS fields., Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 21 figures
- Published
- 2024
22. TempCharBERT: Keystroke Dynamics for Continuous Access Control Based on Pre-trained Language Models
- Author
-
Simão, Matheus, Prado, Fabiano, Wahab, Omar Abdul, and Avila, Anderson
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Computation and Language - Abstract
With the widespread of digital environments, reliable authentication and continuous access control has become crucial. It can minimize cyber attacks and prevent frauds, specially those associated with identity theft. A particular interest lies on keystroke dynamics (KD), which refers to the task of recognizing individuals' identity based on their unique typing style. In this work, we propose the use of pre-trained language models (PLMs) to recognize such patterns. Although PLMs have shown high performance on multiple NLP benchmarks, the use of these models on specific tasks requires customization. BERT and RoBERTa, for instance, rely on subword tokenization, and they cannot be directly applied to KD, which requires temporal-character information to recognize users. Recent character-aware PLMs are able to process both subwords and character-level information and can be an alternative solution. Notwithstanding, they are still not suitable to be directly fine-tuned for KD as they are not optimized to account for user's temporal typing information (e.g., hold time and flight time). To overcome this limitation, we propose TempCharBERT, an architecture that incorporates temporal-character information in the embedding layer of CharBERT. This allows modeling keystroke dynamics for the purpose of user identification and authentication. Our results show a significant improvement with this customization. We also showed the feasibility of training TempCharBERT on a federated learning settings in order to foster data privacy., Comment: Accepted at WIFS 2024
- Published
- 2024
23. Greenback Bears and Fiscal Hawks: Finance is a Jungle and Text Embeddings Must Adapt
- Author
-
Anderson, Peter, Janardhanan, Mano Vikash, He, Jason, Cheng, Wei, and Flanagan, Charlie
- Subjects
Computer Science - Computation and Language - Abstract
Financial documents are filled with specialized terminology, arcane jargon, and curious acronyms that pose challenges for general-purpose text embeddings. Yet, few text embeddings specialized for finance have been reported in the literature, perhaps in part due to a lack of public datasets and benchmarks. We present BAM embeddings, a set of text embeddings finetuned on a carefully constructed dataset of 14.3M query-passage pairs. Demonstrating the benefits of domain-specific training, BAM embeddings achieve Recall@1 of 62.8% on a held-out test set, vs. only 39.2% for the best general-purpose text embedding from OpenAI. Further, BAM embeddings increase question answering accuracy by 8% on FinanceBench and show increased sensitivity to the finance-specific elements that are found in detailed, forward-looking and company and date-specific queries. To support further research we describe our approach in detail, quantify the importance of hard negative mining and dataset scale., Comment: EMNLP 2024
- Published
- 2024
24. Gravitational Wave Propagation in Starobinsky Inflationary Model
- Author
-
Hurtado, Roger Anderson
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
In this work, we linearize the field equations in the $f(R)$ theory using the Starobinsky model, $R+R^2/(6m^2)$, and explore the impact of modifications to the gravitational field equations on the propagation and structure of gravitational waves. An equation for the trace of the perturbation was then derived and decomposed with the aid of an auxiliary field that obeyed the pure wave equation and was sourced by the matter-energy distribution, while also acting as a fictitious source for generating the actual perturbation via the Klein-Gordon equation. The fields were expressed in terms of Green's functions, whose symmetry properties facilitated the solution of the trace equation. This trace value was then substituted into the linearized field equation to determine the perturbation tensor in terms of a modified or effective matter-energy distribution. We subsequently calculated the components of the quadrupole moment tensor as well as the perturbation tensor for a binary star system and compared them to the General Relativity case. The results indicate that the amplitude of the oscillation depends on the orbital parameters, specifically: the angular frequency and radius of the system. This suggests that high-frequency binary systems could be promising candidates for detecting the effects of this modified gravity theory.
- Published
- 2024
25. Integrated modelling of equilibrium and transport in axisymmetric magnetic mirror fusion devices
- Author
-
Frank, S. J., Viola, J., Petrov, Yu. V., Anderson, J. K., Bindl, D., Biswas, B., Caneses, J., Endrizzi, D., Furlong, K., Harvey, R. W., Jacobson, C. M., Lindley, B., Marriott, E., Schmitz, O., Shih, K., and Forest, C. B.
- Subjects
Physics - Plasma Physics - Abstract
This paper presents the Hammir tandem mirror design based on Realta Fusion's first-of-a-kind model for axisymmetric magnetic mirror fusion performance. This model uses an integrated end plug simulation model including, heating, equilibrium, and transport combined with a new formulation of the plasma operation contours (POPCONs) technique for the tandem mirror central cell. Using this model, it is shown that an end plug utilizing high temperature superconducting magnets and modern neutral beams enables a classical tandem mirror pilot plant producing a fusion gain Q > 5. The approach here represents an important advance in tandem mirror design. The high fidelity end plug model enables calculations of heating and transport in the highly non-Maxwellian end plug to be made more accurately and the central cell POPCON technique allows consideration of a wide range of parameters in the relatively simple near-Maxwellian central cell, facilitating the selection of more optimal central cell plasmas. These advances make it possible to find more conservative classical tandem mirror fusion pilot plant operating points with lower $\beta$, temperatures, neutral beam energies, and end plug performance than designs in the literature. Despite being more conservative, it is shown that these operating points can still form the basis of a viable fusion pilot plant.
- Published
- 2024
26. Cosmology From CMB Lensing and Delensed EE Power Spectra Using 2019-2020 SPT-3G Polarization Data
- Author
-
Ge, F., Millea, M., Camphuis, E., Daley, C., Huang, N., Omori, Y., Quan, W., Anderes, E., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chen, G., Chichura, P. M., Chokshi, A., Chou, T. -L., Coerver, A., Crawford, T. M., de Haan, T., Dibert, K. R., Dobbs, M. A., Doohan, M., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gambrel, A. E., Gardner, R. W., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Howe, D., Hryciuk, A., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Lee, A. T., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Rahimi, M., Rahlin, A., Reichardt, C. L., Riebel, D., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., and Zebrowski, J. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
From CMB polarization data alone we reconstruct the CMB lensing power spectrum, comparable in overall constraining power to previous temperature-based reconstructions, and an unlensed E-mode power spectrum. The observations, taken in 2019 and 2020 with the South Pole Telescope (SPT) and the SPT-3G camera, cover 1500 deg$^2$ at 95, 150, and 220 GHz with arcminute resolution and roughly 4.9$\mu$K-arcmin coadded noise in polarization. The power spectrum estimates, together with systematic parameter estimates and a joint covariance matrix, follow from a Bayesian analysis using the Marginal Unbiased Score Expansion (MUSE) method. The E-mode spectrum at $\ell>2000$ and lensing spectrum at $L>350$ are the most precise to date. Assuming the $\Lambda$CDM model, and using only these SPT data and priors on $\tau$ and absolute calibration from Planck, we find $H_0=66.81\pm0.81$ km/s/Mpc, comparable in precision to the Planck determination and in 5.4$\sigma$ tension with the most precise $H_0$ inference derived via the distance ladder. We also find $S_8=0.850\pm0.017$, providing further independent evidence of a slight tension with low-redshift structure probes. The $\Lambda$CDM model provides a good simultaneous fit to the combined Planck, ACT, and SPT data, and thus passes a powerful test. Combining these CMB datasets with BAO observations, we find that the effective number of neutrino species, spatial curvature, and primordial helium fraction are consistent with standard model values, and that the 95% confidence upper limit on the neutrino mass sum is 0.075 eV. The SPT data are consistent with the somewhat weak preference for excess lensing power seen in Planck and ACT data relative to predictions of the $\Lambda$CDM model. We also detect at greater than 3$\sigma$ the influence of non-linear evolution in the CMB lensing power spectrum and discuss it in the context of the $S_8$ tension.(abridged), Comment: 28 pages, 21 figures + appendices
- Published
- 2024
27. Querying Perception Streams with Spatial Regular Expressions
- Author
-
Anderson, Jacob, Fainekos, Georgios, Hoxha, Bardh, Okamoto, Hideki, and Prokhorov, Danil
- Subjects
Computer Science - Robotics ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Formal Languages and Automata Theory - Abstract
Perception in fields like robotics, manufacturing, and data analysis generates large volumes of temporal and spatial data to effectively capture their environments. However, sorting through this data for specific scenarios is a meticulous and error-prone process, often dependent on the application, and lacks generality and reproducibility. In this work, we introduce SpREs as a novel querying language for pattern matching over perception streams containing spatial and temporal data derived from multi-modal dynamic environments. To highlight the capabilities of SpREs, we developed the STREM tool as both an offline and online pattern matching framework for perception data. We demonstrate the offline capabilities of STREM through a case study on a publicly available AV dataset (Woven Planet Perception) and its online capabilities through a case study integrating STREM in ROS with the CARLA simulator. We also conduct performance benchmark experiments on various SpRE queries. Using our matching framework, we are able to find over 20,000 matches within 296 ms making STREM applicable in runtime monitoring applications., Comment: This work has been submitted to the International Journal on Software Tools for Technology Transfer
- Published
- 2024
28. Can Efficient Fourier-Transform Techniques Favorably Impact on Broadband Computational Electromagnetism?
- Author
-
Anderson, Thomas G., Lyon, Mark, Yin, Tao, and Bruno, Oscar P.
- Subjects
Physics - Computational Physics ,Mathematics - Numerical Analysis ,65R10, 65R20 - Abstract
In view of recently demonstrated joint use of novel Fourier-transform techniques and effective high-accuracy frequency domain solvers related to the Method of Moments, it is argued that a set of transformative innovations could be developed for the effective, accurate and efficient simulation of problems of wave propagation and scattering of broadband, time-dependent wavefields. This contribution aims to convey the character of these methods and to highlight their applicability in computational modeling of electromagnetic configurations across various fields of science and engineering.
- Published
- 2024
29. Misclassification of Vaccination Status in Electronic Health Records: A Bayesian Approach in Cluster Randomized Trials
- Author
-
Kaplan, Adam, Calvert, Collin, Griffith, Bridget C., Bertenthal, Daniel, Purcell, Natalie, Seal, Karen, Pyne, Jeffrey M., Oliver, Karen Anderson, Esserman, Denise, and Nelson, David
- Subjects
Statistics - Methodology - Abstract
Misclassification in binary outcomes is not uncommon and statistical methods to investigate its impact on policy-driving study results are lacking. While misclassifying binary outcomes is a statistically ubiquitous phenomena, we focus on misclassification in a public health application: vaccinations. One such study design in public health that addresses policy is the cluster controlled randomized trial (CCRT). A CCRT that measures the impact of a novel behavioral intervention on increasing vaccine uptake can be severely biased when the supporting data are incomplete vaccination records. In particular, these vaccine records more often may be prone to negative misclassification, that is, a clinic's record of an individual patient's vaccination status may be unvaccinated when, in reality, this patient was vaccinated outside of the clinic. With large nation-wide endeavors to encourage vaccinations without a gold-standard vaccine record system, sensitivity analyses that incorporate misclassification rates are promising for robust inference. In this work we introduce a novel extension of Bayesian logistic regression where we perturb the clinic size and vaccination count with random draws from expert-elicited prior distributions. These prior distributions represent the misclassification rates for each clinic that stochastically add unvaccinated counts to the observed vaccinated counts. These prior distributions are assigned for each clinic (the first level in a group-level randomized trial). We demonstrate this method with a data application from a CCRT evaluating the influence of a behavioral intervention on vaccination uptake among U.S. veterans. A simulation study is carried out demonstrating its estimation properties.
- Published
- 2024
30. $C^*$-simplicity and boundary actions of discrete quantum groups
- Author
-
Anderson-Sackaney, Benjamin and Vergnioux, Roland
- Subjects
Mathematics - Operator Algebras ,Mathematics - Quantum Algebra ,46L67, 46L05, 20G42, 37B05 - Abstract
We introduce and investigate several quantum group dynamical notions for the purpose of studying $C^*$-simplicity of discrete quantum groups via the theory of boundary actions. In particular we define a quantum analogue of Powers' Averaging Property (PAP) and a quantum analogue of strongly faithful actions. We show that our quantum PAP implies $C^*$-simplicity and the uniqueness of $\sigma$-KMS states, and that the existence of a strongly $C^*$-faithful quantum boundary action also implies $C^*$-simplicity and, in the unimodular case, the quantum PAP. We illustrate these results in the case of the unitary free quantum groups $\mathbb{F} U_F$ by showing that they satisfy the quantum PAP and that they act strongly $C^*$-faithfully on their quantum Gromov boundary. Moreover we prove that this particular action of $\mathbb{F} U_F$ is a quantum boundary action., Comment: 25 pages
- Published
- 2024
31. A Theory of Stabilization by Skull Carving
- Author
-
Lamarre, Mathieu, Anderson, Patrick, and Danvoye, Étienne
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Accurate stabilization of facial motion is essential for applications in photoreal avatar construction for 3D games, virtual reality, movies, and training data collection. For the latter, stabilization must work automatically for the general population with people of varying morphology. Distinguishing rigid skull motion from facial expressions is critical since misalignment between skull motion and facial expressions can lead to animation models that are hard to control and can not fit natural motion. Existing methods struggle to work with sparse sets of very different expressions, such as when combining multiple units from the Facial Action Coding System (FACS). Certain approaches are not robust enough, some depend on motion data to find stable points, while others make one-for-all invalid physiological assumptions. In this paper, we leverage recent advances in neural signed distance fields and differentiable isosurface meshing to compute skull stabilization rigid transforms directly on unstructured triangle meshes or point clouds, significantly enhancing accuracy and robustness. We introduce the concept of a stable hull as the surface of the boolean intersection of stabilized scans, analogous to the visual hull in shape-from-silhouette and the photo hull from space carving. This hull resembles a skull overlaid with minimal soft tissue thickness, upper teeth are automatically included. Our skull carving algorithm simultaneously optimizes the stable hull shape and rigid transforms to get accurate stabilization of complex expressions for large diverse sets of people, outperforming existing methods., Comment: 4 pages, 3 figures
- Published
- 2024
32. A Behavior Architecture for Fast Humanoid Robot Door Traversals
- Author
-
Calvert, Duncan, Penco, Luigi, Anderson, Dexton, Bialek, Tomasz, Chatterjee, Arghya, Mishra, Bhavyansh, Clark, Geoffrey, Bertrand, Sylvain, and Griffin, Robert
- Subjects
Computer Science - Robotics - Abstract
Towards the role of humanoid robots as squad mates in urban operations and other domains, we identified doors as a major area lacking capability development. In this paper, we focus on the ability of humanoid robots to navigate and deal with doors. Human-sized doors are ubiquitous in many environment domains and the humanoid form factor is uniquely suited to operate and traverse them. We present an architecture which incorporates GPU accelerated perception and a tree based interactive behavior coordination system with a whole body motion and walking controller. Our system is capable of performing door traversals on a variety of door types. It supports rapid authoring of behaviors for unseen door types and techniques to achieve re-usability of those authored behaviors. The behaviors are modelled using trees and feature logical reactivity and action sequences that can be executed with layered concurrency to increase speed. Primitive actions are built on top of our existing whole body controller which supports manipulation while walking. We include a perception system using both neural networks and classical computer vision for door mechanism detection outside of the lab environment. We present operator-robot interdependence analysis charts to explore how human cognition is combined with artificial intelligence to produce complex robot behavior. Finally, we present and discuss real robot performances of fast door traversals on our Nadia humanoid robot. Videos online at https://www.youtube.com/playlist?list=PLXuyT8w3JVgMPaB5nWNRNHtqzRK8i68dy., Comment: 15 pages, 23 figure, for submission to Elsevier RAS
- Published
- 2024
33. Detection of Thermal Emission at Millimeter Wavelengths from Low-Earth Orbit Satellites
- Author
-
Foster, A., Chokshi, A., Anderson, A. J., Ansarinejad, B., Archipley, M., Balkenhol, L., Benabed, K., Bender, A. N., Barron, D. R., Benson, B. A., Bianchini, F., Bleem, L. E., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Chang, C. L., Chaubal, P., Chichura, P. M., Chou, T. -L., Coerver, A., Crawford, T. M., Daley, C., de Haan, T., Dibert, K. R., Dobbs, M. A., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Galli, S., Gambrel, A. E., Gardner, R. W., Ge, F., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hryciuk, A., Huang, N., Kéruzoré, F., Khalife, A. R., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Levy, K., Lowitz, A. E., Lu, C., Maniyar, A., Martsen, E. S., Menanteau, F., Millea, M., Montgomery, J., Nakato, Y., Natoli, T., Noble, G. I., Omori, Y., Pan, Z., Paschos, P., Phadke, K. A., Pollak, A. W., Prabhu, K., Quan, W., Raghunathan, S., Rahimi, M., Rahlin, A., Reichardt, C. L., Rouble, M., Ruhl, J. E., Schiappucci, E., Sobrin, J. A., Stark, A. A., Stephen, J., Tandoi, C., Thorne, B., Trendafilova, C., Umilta, C., Vieira, J. D., Vitrier, A., Wan, Y., Whitehorn, N., Wu, W. L. K., Young, M. R., and Zebrowski, J. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial satellites at millimeter wavelengths. Satellite thermal emission is shown to be detectable at high signal-to-noise on timescales as short as a few tens of milliseconds. An algorithm for downloading orbital information and tracking known satellites given observer constraints and time-ordered observatory pointing is described. Consequences for cosmological surveys and short-duration transient searches are discussed, revealing that the integrated thermal emission from all large satellites does not contribute significantly to the SPT-3G survey intensity map. Measured satellite positions are found to be discrepant from their two-line element (TLE) derived ephemerides up to several arcminutes which may present a difficulty in cross-checking or masking satellites from short-duration transient searches.
- Published
- 2024
34. Euclid: High-precision imaging astrometry and photometry from Early Release Observations. I. Internal kinematics of NGC 6397 by combining Euclid and Gaia data
- Author
-
Libralato, M., Bedin, L. R., Griggio, M., Massari, D., Anderson, J., Cuillandre, J. -C., Ferguson, A. M. N., Lançon, A., Larsen, S. S., Schirmer, M., Annibali, F., Balbinot, E., Dalessandro, E., Erkal, D., Kuzma, P. B., Saifollahi, T., Kleijn, G. Verdoes, Kümmel, M., Nakajima, R., Correnti, M., Battaglia, G., Altieri, B., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Refregier, A., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Sauvage, M., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tsyganov, A., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Scottez, V., Scott, D., and Smart, R. L.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The instruments at the focus of the Euclid space observatory offer superb, diffraction-limited imaging over an unprecedented (from space) wide field of view of 0.57 deg$^2$. This exquisite image quality has the potential to produce high-precision astrometry for point sources once the undersampling of Euclid's cameras is taken into account by means of accurate, effective point spread function (ePSF) modelling. We present a complex, detailed workflow to simultaneously solve for the geometric distortion (GD) and model the undersampled ePSFs of the Euclid detectors. Our procedure was successfully developed and tested with data from the Early Release Observations (ERO) programme focused on the nearby globular cluster NGC 6397. Our final one-dimensional astrometric precision for a well-measured star just below saturation is 0.7 mas (0.007 pixel) for the Visible Instrument (VIS) and 3 mas (0.01 pixel) for the Near-Infrared Spectrometer and Photometer (NISP). Finally, we present a specific scientific application of this high-precision astrometry: the combination of Euclid and Gaia data to compute proper motions and study the internal kinematics of NGC 6397. Future work, when more data become available, will allow for a better characterisation of the ePSFs and GD corrections that are derived here, along with assessment of their temporal stability, and their dependencies on the spectral energy distribution of the sources as seen through the wide-band filters of Euclid., Comment: 23 pages, 21 figures. Accepted for publication in A&A on October 24, 2024. Astro-photometric catalogs and stacked images will be available at the CDS after the paper will be published
- Published
- 2024
35. Automatic Structured Pruning for Efficient Architecture in Federated Learning
- Author
-
Nguyen, Thai Vu, Le, Long Bao, and Avila, Anderson
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
In Federated Learning (FL), training is conducted on client devices, typically with limited computational resources and storage capacity. To address these constraints, we propose an automatic pruning scheme tailored for FL systems. Our solution improves computation efficiency on client devices, while minimizing communication costs. One of the challenges of tuning pruning hyper-parameters in FL systems is the restricted access to local data. Thus, we introduce an automatic pruning paradigm that dynamically determines pruning boundaries. Additionally, we utilized a structured pruning algorithm optimized for mobile devices that lack hardware support for sparse computations. Experimental results demonstrate the effectiveness of our approach, achieving accuracy comparable to existing methods. Our method notably reduces the number of parameters by 89% and FLOPS by 90%, with minimal impact on the accuracy of the FEMNIST and CelebFaces datasets. Furthermore, our pruning method decreases communication overhead by up to 5x and halves inference time when deployed on Android devices.
- Published
- 2024
36. Mixed Reality Teleoperation Assistance for Direct Control of Humanoids
- Author
-
Penco, Luigi, Momose, Kazuhiko, McCrory, Stephen, Anderson, Dexton, Kitchel, Nicholas, Calvert, Duncan, and Griffin, Robert J.
- Subjects
Computer Science - Robotics - Abstract
Teleoperation plays a crucial role in enabling robot operations in challenging environments, yet existing limitations in effectiveness and accuracy necessitate the development of innovative strategies for improving teleoperated tasks. This article introduces a novel approach that utilizes mixed reality and assistive autonomy to enhance the efficiency and precision of humanoid robot teleoperation. By leveraging Probabilistic Movement Primitives, object detection, and Affordance Templates, the assistance combines user motion with autonomous capabilities, achieving task efficiency while maintaining human-like robot motion. Experiments and feasibility studies on the Nadia robot confirm the effectiveness of the proposed framework., Comment: IEEE Robotics and Automation, Volume: 9, Issue: 2
- Published
- 2024
37. Development of a nonlinear plasma lens for achromatic beam transport
- Author
-
Drobniak, P., Adli, E., Anderson, H. Bergravf, Dyson, A., Mewes, S. M., Sjobak, K. N., Thévenet, M., and Lindstrøm, C. A.
- Subjects
Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
We introduce the new idea of a nonlinear active plasma lens, as part of a larger transport lattice for achromatic electron beam transport. The proposed implementation is based on using the Hall effect in a plasma and is motivated by 1D-hydrodynamic simulations. The manufactured design is presented, including its undergoing experimental characterisation on the CLEAR beam-line at CERN., Comment: 16 pages, 10 figures, submitted to AAC 2024 conference proceedings
- Published
- 2024
38. Pipe-Cleaner: Flexible Fuzzing Using Security Policies
- Author
-
Naaktgeboren, Allison, Anderson, Sean Noble, Tolmach, Andrew, and Sullivan, Greg
- Subjects
Computer Science - Cryptography and Security - Abstract
Fuzzing has proven to be very effective for discovering certain classes of software flaws, but less effective in helping developers process these discoveries. Conventional crash-based fuzzers lack enough information about failures to determine their root causes, or to differentiate between new or known crashes, forcing developers to manually process long, repetitious lists of crash reports. Also, conventional fuzzers typically cannot be configured to detect the variety of bugs developers care about, many of which are not easily converted into crashes. To address these limitations, we propose Pipe-Cleaner, a system for detecting and analyzing C code vulnerabilities using a refined fuzzing approach. Pipe-Cleaner is based on flexible developer-designed security policies enforced by a tag-based runtime reference monitor, which communicates with a policy-aware fuzzer. Developers are able to customize the types of faults the fuzzer detects and the level of detail in fault reports. Adding more detail helps the fuzzer to differentiate new bugs, discard duplicate bugs, and improve the clarity of results for bug triage. We demonstrate the potential of this approach on several heap-related security vulnerabilities, including classic memory safety violations and two novel non-crashing classes outside the reach of conventional fuzzers: leftover secret disclosure, and heap address leaks., Comment: 10 pages, 6 figures
- Published
- 2024
39. A Linear Response Analysis of the Semiclassical Approximation to Spin 1/2 Quantum Electrodynamics in 1+1 Dimensions
- Author
-
Newsome, Ian M., Anderson, Paul R., and Grotzke, Eric M.
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Theory - Abstract
An investigation of the validity of the semiclassical approximation to quantum electrodynamics in 1+1 dimensions is given. The criterion for validity used here involves the impact of quantum fluctuations introduced through a two-point function which emerges naturally when considering the stability of the backreaction equation to linear order perturbations, resulting in the linear response equation. Consideration is given to the case of a spatially homogeneous electric field generated by a classical source, coupled to a quantized massive spin 1/2 field. Solutions to the linear response equation as well as the impact of quantum fluctuations introduced through the current density two-point correlation function are presented for two relevant electric field-to-mass parameter values $qE/m^2$, indicative of the strength of the backreaction process. Previous efforts utilized approximate solutions to the linear response equation that were expected to be valid for early times. A comparative analysis is given between the exact and approximate solutions in order to validate this conjecture., Comment: 29 pages, 5 figures
- Published
- 2024
40. AI-assisted Agile Propagation Modeling for Real-time Digital Twin Wireless Networks
- Author
-
Saeizadeh, Ali, Tehrani-Moayyed, Miead, Villa, Davide, Beattie Jr., J. Gordon, Wong, Ian C., Johari, Pedram, Anderson, Eric W., Basagni, Stefano, and Melodia, Tommaso
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Accurate channel modeling in real-time faces remarkable challenge due to the complexities of traditional methods such as ray tracing and field measurements. AI-based techniques have emerged to address these limitations, offering rapid, precise predictions of channel properties through ground truth data. This paper introduces an innovative approach to real-time, high-fidelity propagation modeling through advanced deep learning. Our model integrates 3D geographical data and rough propagation estimates to generate precise path gain predictions. By positioning the transmitter centrally, we simplify the model and enhance its computational efficiency, making it amenable to larger scenarios. Our approach achieves a normalized Root Mean Squared Error of less than 0.035 dB over a 37,210 square meter area, processing in just 46 ms on a GPU and 183 ms on a CPU. This performance significantly surpasses traditional high-fidelity ray tracing methods, which require approximately three orders of magnitude more time. Additionally, the model's adaptability to real-world data highlights its potential to revolutionize wireless network design and optimization, through enabling real-time creation of adaptive digital twins of real-world wireless scenarios in dynamic environments., Comment: 6 pages, 10 figures, IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 21-23 October 2024, Athens, Greece
- Published
- 2024
41. GPU Sharing with Triples Mode
- Author
-
Byun, Chansup, Reuther, Albert, Anderson, LaToya, Arcand, William, Bergeron, Bill, Bestor, David, Bonn, Alexander, Burrill, Daniel, Gadepally, Vijay, Houle, Michael, Hubbell, Matthew, Jananthan, Hayden, Jones, Michael, Luszczek, Piotr, Michaleas, Peter, Milechin, Lauren, Morales, Guillermo, Mullen, Julie, Prout, Andrew, Rosa, Antonio, Yee, Charles, and Kepner, Jeremy
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
There is a tremendous amount of interest in AI/ML technologies due to the proliferation of generative AI applications such as ChatGPT. This trend has significantly increased demand on GPUs, which are the workhorses for training AI models. Due to the high costs of GPUs and lacking supply, it has become of interest to optimize GPU usage in HPC centers. MIT Lincoln Laboratory Supercomputing Center (LLSC) has developed an easy-to-use GPU sharing feature supported by LLSC-developed tools including LLsub and LLMapReduce. This approach overcomes some of the limitations with the existing methods for GPU sharing. This allows users to apply GPU sharing whenever possible while they are developing their AI/ML models and/or doing parametric study on their AI models or executing other GPU applications. Based on our initial experimental results with GPU sharing, GPU sharing with triples mode is easy to use and achieved significant improvement in GPU usage and throughput performance for certain types of AI applications.
- Published
- 2024
42. Unveiling the nature of SN 2022jli: the first double-peaked stripped-envelope supernova showing periodic undulations and dust emission at late times
- Author
-
Cartier, Régis, Contreras, Carlos, Stritzinger, Maximilian, Hamuy, Mario, Ruiz-Lapuente, Pilar, Prieto, Jose L., Anderson, Joseph P., Cikota, Aleksandar, and Gerlach, Matthias
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present optical and IR observations from maximum light until around 600 d of SN 2022jli, a peculiar SE SN showing two maxima, each one with a peak luminosity of about 3 x 10^{42} erg/s and separated by 50 d. The second maximum is followed by periodic undulations with a period of P ~ 12.5 days. The spectra and the photometric evolution of the first maximum are consistent with the behaviour of a standard SE SN with an ejecta mass of 1.5 +/- 0.4 Msun, and a nickel mass of 0.12 +/- 0.01 Msun. The optical spectra after 400 d correspond to a standard SN Ic event, and at late times SN 2022jli exhibits a significant drop in the optical luminosity implying that the physical phenomena that produced the secondary maximum has ceased to power the SN light curve. One possibility is that the second maximum is powered by a magnetar with an initial spin period of P=48.5 ms and a magnetic field of B = 8.5x10^{14} G, while the light curve periodic undulations could be produced by accretion of material from a companion star onto the neutron star in a binary system. The near-IR spectra shows clear 1st CO overtone emission from about 190 d after the first maximum, and it becomes undetected at 400 d. A significant near-IR excess from hot dust emission is detected at 238 d produced by either newly formed dust in the SN ejecta or due to a strong near-IR dust echo. Depending on the assumptions of the dust composition, the estimated dust mass is 2-16 x 10^{-4} Msun. The magnetar power of the second maximum can fit in a more general picture where magnetars are the power source of super-luminous SNe, could produce their frequent bumps and undulations, and where pulsars could produce the late time excess observed in some SE SNe. The detection of CO and the potential detection of dust formed in the ejecta of SN2022jli are important to understand the formation molecules and dust in the ejecta of SE SNe., Comment: Submitted to A&A (27 pages and 22 figures)
- Published
- 2024
43. LLload: An Easy-to-Use HPC Utilization Tool
- Author
-
Byun, Chansup, Reuther, Albert, Mullen, Julie, Anderson, LaToya, Arcand, William, Bergeron, Bill, Bestor, David, Bonn, Alexander, Burrill, Daniel, Gadepally, Vijay, Houle, Michael, Hubbell, Matthew, Jananthan, Hayden, Jones, Michael, Luszczek, Piotr, Michaleas, Peter, Milechin, Lauren, Morales, Guillermo, Prout, Andrew, Rosa, Antonio, Yee, Charles, and Kepner, Jeremy
- Subjects
Computer Science - Performance - Abstract
The increasing use and cost of high performance computing (HPC) requires new easy-to-use tools to enable HPC users and HPC systems engineers to transparently understand the utilization of resources. The MIT Lincoln Laboratory Supercomputing Center (LLSC) has developed a simple command, LLload, to monitor and characterize HPC workloads. LLload plays an important role in identifying opportunities for better utilization of compute resources. LLload can be used to monitor jobs both programmatically and interactively. LLload can characterize users' jobs using various LLload options to achieve better efficiency. This information can be used to inform the user to optimize HPC workloads and improve both CPU and GPU utilization. This includes improvements using judicious oversubscription of the computing resources. Preliminary results suggest significant improvement in GPU utilization and overall throughput performance with GPU overloading in some cases. By enabling users to observe and fix incorrect job submission and/or inappropriate execution setups, LLload can increase the resource usage and improve the overall throughput performance. LLload is a light-weight, easy-to-use tool for both HPC users and HPC systems engineers to monitor HPC workloads to improve system utilization and efficiency.
- Published
- 2024
44. MatViX: Multimodal Information Extraction from Visually Rich Articles
- Author
-
Khalighinejad, Ghazal, Scott, Sharon, Liu, Ollie, Anderson, Kelly L., Stureborg, Rickard, Tyagi, Aman, and Dhingra, Bhuwan
- Subjects
Computer Science - Computation and Language - Abstract
Multimodal information extraction (MIE) is crucial for scientific literature, where valuable data is often spread across text, figures, and tables. In materials science, extracting structured information from research articles can accelerate the discovery of new materials. However, the multimodal nature and complex interconnections of scientific content present challenges for traditional text-based methods. We introduce \textsc{MatViX}, a benchmark consisting of $324$ full-length research articles and $1,688$ complex structured JSON files, carefully curated by domain experts. These JSON files are extracted from text, tables, and figures in full-length documents, providing a comprehensive challenge for MIE. We introduce an evaluation method to assess the accuracy of curve similarity and the alignment of hierarchical structures. Additionally, we benchmark vision-language models (VLMs) in a zero-shot manner, capable of processing long contexts and multimodal inputs, and show that using a specialized model (DePlot) can improve performance in extracting curves. Our results demonstrate significant room for improvement in current models. Our dataset and evaluation code are available\footnote{\url{https://matvix-bench.github.io/}}.
- Published
- 2024
45. Entropies and Poisson boundaries of random walks on groups with rapid decay
- Author
-
Anderson-Sackaney, Benjamin, de Laat, Tim, Samei, Ebrahim, and Wiersma, Matthew
- Subjects
Mathematics - Dynamical Systems ,Mathematics - Operator Algebras - Abstract
Let $G$ be a countable group and $\mu$ a probability measure on $G$. We build a new framework to compute asymptotic quantities associated with the $\mu$-random walk on $G$, using methods from harmonic analysis on groups and Banach space theory, most notably the complex interpolation. It is shown that under mild conditions, the Lyapunov exponent of the $\mu$-random walk with respect to a weight $\omega$ on $G$ can be computed in terms of the asymptotic behavior of the spectral radius of $\mu$ in an ascending class of weighted group algebras, and we prove that for natural choices of $\omega$ and $\mu$, the Lyapunov exponent vanishes. Also, we show that the Avez entropy of the $\mu$-random walk can be realized as the Lyapunov exponent of $\mu$ with respect to a suitable weight. Next, by considering the spectral radius in the algebras of $p$-pseudofunctions on $G$, we introduce a new asymptotic quantity, which we call convolution entropy. We show that for groups with the property of rapid decay, the convolution entropy coincides with the Avez entropy. Subsequently, we apply our results to stationary dynamical systems consisting of an action of a group with the property of rapid decay on a probability space. We prove that whenever the associated Koopman representation is weakly contained in the left-regular representation of the group, then the Avez entropy coincides with the Furstenberg entropy of the stationary space. This gives a characterization of (Zimmer) amenability for actions of rapid decay groups on stationary spaces.
- Published
- 2024
46. Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3 -- Ex vivo imaging: data processing, comparisons with microscopy, and tractography
- Author
-
Schilling, Kurt G, Howard, Amy FD, Grussu, Francesco, Ianus, Andrada, Hansen, Brian, Barrett, Rachel L C, Aggarwal, Manisha, Michielse, Stijn, Nasrallah, Fatima, Syeda, Warda, Wang, Nian, Veraart, Jelle, Roebroeck, Alard, Bagdasarian, Andrew F, Eichner, Cornelius, Sepehrband, Farshid, Zimmermann, Jan, Soustelle, Lucas, Bowman, Christien, Tendler, Benjamin C, Hertanu, Andreea, Jeurissen, Ben, Verhoye, Marleen, Frydman, Lucio, van de Looij, Yohan, Hike, David, Dunn, Jeff F, Miller, Karla, Landman, Bennett A, Shemesh, Noam, Anderson, Adam, McKinnon, Emilie, Farquharson, Shawna, Acqua, Flavio Dell', Pierpaoli, Carlo, Drobnjak, Ivana, Leemans, Alexander, Harkins, Kevin D, Descoteaux, Maxime, Xu, Duan, Huang, Hao, Santin, Mathieu D, Grant, Samuel C., Obenaus, Andre, Kim, Gene S, Wu, Dan, Bihan, Denis Le, Blackband, Stephen J, Ciobanu, Luisa, Fieremans, Els, Bai, Ruiliang, Leergaard, Trygve B, Zhang, Jiangyang, Dyrby, Tim B, Johnson, G Allan, Cohen-Adad, Julien, Budde, Matthew D, and Jelescu, Ileana O
- Subjects
Physics - Medical Physics - Abstract
Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high signal-to-noise ratio (SNR) images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a 3-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing and model fitting, and tractography. In each section, we attempt to provide guidelines and recommendations, but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing, and point towards open-source software and databases specific to small animal and ex vivo imaging., Comment: Part 3 of 3 in "Considerations and recommendations for preclinical diffusion MRI"
- Published
- 2024
47. A second radio flare from the tidal disruption event AT2020vwl: a delayed outflow ejection?
- Author
-
Goodwin, A. J., Mummery, A., Laskar, T., Alexander, K. D., Anderson, G. E., Bietenholz, M., Bonnerot, C., Christy, C. T., Golay, W., Lu, W., Margutti, R., Miller-Jones, J. C. A., Ramirez-Ruiz, E., Saxton, R., and van Velzen, S.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
We present the discovery of a second radio flare from the tidal disruption event (TDE) AT2020vwl via long-term monitoring radio observations. Late-time radio flares from TDEs are being discovered more commonly, with many TDEs showing radio emission 1000s of days after the stellar disruption, but the mechanism that powers these late-time flares is uncertain. Here we present radio spectral observations of the first and second radio flares observed from the TDE AT2020vwl. Through detailed radio spectral monitoring, we find evidence for two distinct outflow ejection episodes, or a period of renewed energy injection into the pre-existing outflow. We deduce that the second radio flare is powered by an outflow that is initially slower than the first flare, but carries more energy and accelerates over time. Through modelling the long-term optical and UV emission from the TDE as arising from an accretion disc, we infer that the second radio outflow launch or energy injection episode occurred approximately at the time of peak accretion rate. The fast decay of the second flare precludes environmental changes as an explanation, while the velocity of the outflow is at all times too low to be explained by an off-axis relativistic jet. Future observations that search for any link between the accretion disc properties and late time radio flares from TDEs will aid in understanding what powers the radio outflows in TDEs, and confirm if multiple outflow ejections or energy injection episodes are common., Comment: 19 pages, 7 figures, submitted to ApJ. Comments welcome
- Published
- 2024
48. Approximate Projections onto the Positive Semidefinite Cone Using Randomization
- Author
-
Jones, Morgan and Anderson, James
- Subjects
Mathematics - Optimization and Control ,Mathematics - Numerical Analysis - Abstract
This paper presents two novel algorithms for approximately projecting symmetric matrices onto the Positive Semidefinite (PSD) cone using Randomized Numerical Linear Algebra (RNLA). Classical PSD projection methods rely on full-rank deterministic eigen-decomposition, which can be computationally prohibitive for large-scale problems. Our approach leverages RNLA to construct low-rank matrix approximations before projection, significantly reducing the required numerical resources. The first algorithm utilizes random sampling to generate a low-rank approximation, followed by a standard eigen-decomposition on this smaller matrix. The second algorithm enhances this process by introducing a scaling approach that aligns the leading-order singular values with the positive eigenvalues, ensuring that the low-rank approximation captures the essential information about the positive eigenvalues for PSD projection. Both methods offer a trade-off between accuracy and computational speed, supported by probabilistic error bounds. To further demonstrate the practical benefits of our approach, we integrate the randomized projection methods into a first-order Semi-Definite Programming (SDP) solver. Numerical experiments, including those on SDPs derived from Sum-of-Squares (SOS) programming problems, validate the effectiveness of our method, especially for problems that are infeasible with traditional deterministic methods.
- Published
- 2024
49. Arcus: SLO Management for Accelerators in the Cloud with Traffic Shaping
- Author
-
Zhao, Jiechen, Shu, Ran, Lim, Katie, Fan, Zewen, Anderson, Thomas, Gao, Mingyu, and Jerger, Natalie Enright
- Subjects
Computer Science - Hardware Architecture ,Computer Science - Operating Systems - Abstract
Cloud servers use accelerators for common tasks (e.g., encryption, compression, hashing) to improve CPU/GPU efficiency and overall performance. However, users' Service-level Objectives (SLOs) can be violated due to accelerator-related contention. The root cause is that existing solutions for accelerators only focus on isolation or fair allocation of compute and memory resources; they overlook the contention for communication-related resources. Specifically, three communication-induced challenges drive us to re-think the problem: (1) Accelerator traffic patterns are diverse, hard to predict, and mixed across users, (2) communication-related components lack effective low-level isolation mechanism to configure, and (3) computational heterogeneity of accelerators lead to unique relationships between the traffic mixture and the corresponding accelerator performance. The focus of this work is meeting SLOs in accelerator-rich systems. We present \design{}, treating accelerator SLO management as traffic management with proactive traffic shaping. We develop an SLO-aware protocol coupled with an offloaded interface on an architecture that supports precise and scalable traffic shaping. We guarantee accelerator SLO for various circumstances, with up to 45% tail latency reduction and less than 1% throughput variance.
- Published
- 2024
50. Zero Forcing of Generalized Hierarchical Products of Graphs
- Author
-
LeClair, Heather, Spilde, Tim, Anderson, Sarah, and Kroschel, Brenda
- Subjects
Mathematics - Combinatorics ,05C69, 05C57 - Abstract
Zero forcing is a graph propagation process for which vertices fill-in (or propagate information to) neighbor vertices if all neighbors except for one, are filled. The zero-forcing number is the smallest number of vertices that must be filled to begin the process so that the entire graph or network becomes filled. In this paper, bounds are provided on the zero forcing number of generalized hierarchical products.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.