1. Roasted yerba mate (Ilex paraguariensis) infusions in bovine milk model before and after in vitro digestion: Bioaccessibility of phenolic compounds, antioxidant activity, protein-polyphenol interactions and bioactive peptides.
- Author
-
Kautzmann C, Castanha E, Aloísio Johann Dammann C, Andersen Pereira de Jesus B, Felippe da Silva G, de Lourdes Borba Magalhães M, Turnes Pasini Deolindo C, and Pinto Kempka A
- Subjects
- Animals, Cattle, Plant Extracts chemistry, Ilex paraguariensis chemistry, Antioxidants pharmacokinetics, Milk chemistry, Digestion, Phenols analysis, Peptides chemistry, Biological Availability, Polyphenols pharmacokinetics
- Abstract
Yerba mate is increasingly acknowledged for its bioactive properties and is currently being incorporated into various food and pharmaceutical products. When roasted, yerba mate transforms into mate tea, consumed as a hot aqueous infusion, and has gained popularity. This study investigated the bioaccessibility of phenolic compounds, protein-polyphenol interactions, antioxidant activity, and bioactive peptides in roasted yerba mate infusions, utilizing whole, semi-skimmed, and skimmed bovine milk models. The phytochemical profile of roasted yerba mate was analyzed in infusions with water and milk (whole, semi-skimmed, and skimmed), before and after in vitro digestion, identifying 18 compounds that exhibited variations in composition and presence among the samples. Bioavailability varied across different milk matrices, with milk being four times more efficient as a solvent for extraction. Gastric digestion significantly impacted (p < 0.05) the release of phenolic compounds, such as chlorogenic acid and rutin, with only chlorogenic acid remaining 100 % bioavailable in the infusion prepared with skimmed milk. Protein-polyphenol interaction did not influence protein digestion in different infusions, as there was a similarity in the hydrolysis pattern during the digestive process. Changes in antioxidant activity during digestion phases, especially after intestinal digestion in milk infusions, were related to alterations in protein structures and digestive interactions. The evaluation of total phenolic compounds highlighted that skimmed milk infusion notably preserved these compounds during digestion. Peptidomic analysis identified 253, 221, and 191 potentially bioactive peptides for whole, semi-skimmed, and skimmed milk-digested infusions, respectively, with a focus on anti-inflammatory and anticancer activities, presenting a synergistic approach to promote health benefits. The selection of milk type is crucial for comprehending the effects of digestion and interactions in bioactive compound-rich foods, highlighting the advantages of consuming plant infusions prepared with milk., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF