1. Glows, arcs, ohmic discharges: An electrode-centered review on discharge modes and the transitions between them
- Author
-
Anders, André
- Subjects
Chemical Sciences ,Physical Chemistry ,Condensed Matter Physics ,Macromolecular and Materials Chemistry ,Materials Engineering ,Macromolecular and materials chemistry ,Materials engineering - Abstract
Ever since they have been studied, gas discharges have been classified by their visual appearance as well as by their current and voltage levels. Glow and arc discharges are the most prominent and well-known modes of discharges involving electrodes. In a first approximation, they are distinguished by their current and voltage levels, and current–voltage characteristics are a common way to display their relations. In this review, glow discharges are defined by their individual electron emission mechanism such as secondary electron emission by photons and primary ions, and arcs by their respective collective mechanism such as thermionic or explosive electron emission. Emitted electrons are accelerated in the cathode sheath and play an important role in sustaining the discharge plasma. In some cases, however, electron emission is not important for sustaining the plasma, and consequently we have neither a glow nor an arc discharge but a third type of discharge, the ohmic discharge. In part 1 of this review, these relationships are explained for quasi-stationary discharges, culminating with updated graphical presentations of I–V characteristics (Figs. 15 and 16). In part 2, further examples are reviewed to include time-dependent discharges, discharges with electron trapping (hollow cathode, E×B discharges) and active anode effects.
- Published
- 2024