113 results on '"Anas M. Abdel Rahman"'
Search Results
2. Untargeted metabolomics reveals the impact of Liraglutide treatment on metabolome profiling and metabolic pathways in type-2 diabetes mellitus
- Author
-
Hicham Benabdelkamel, Rajaa Sebaa, Reem H. AlMalki, Afshan Masood, Assim A. Alfadda, and Anas M. Abdel Rahman
- Subjects
T2DM ,GLP-1 analog ,Liraglutide ,Metabolomics ,Metabolome ,Pentose and glucuronate interconversion ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Liraglutide, a type2 diabetes mellitus (T2DM)-related treatment, improves glycemic control and reduces the risks of adverse cardiovascular events in T2DM patients. However, the underlying mechanisms of the above-mentioned beneficial effects of Liraglutide are not well understood. To have better understanding of these mechanisms, we aimed to study the metabolic impacts of Liraglutide on the metabolome and corresponding pathways in T2DM patients, especially metabolism plays a very fundamental role in health and diseases and is influenced by drugs. In this study, plasma samples collected from T2DM patients (n = 20) and taken pre- and post-Liraglutide treatment were used for untargeted metabolomics analyses, including metabolome profiling and metabolic pathway/network analyses. The metabolome profiling analyses identified 93 endogenous metabolites that were significantly affected by Liraglutide treatment where 49 and 44 metabolites were up and down regulated, respectively. Liraglutide caused metabolic alterations impacting metabolic pathways such as pentose and glucuronate interconversion and alanine, aspartate and glutamate metabolism in T2DM patients. Since the last-mentioned pathways are affected by Liraglutide, it could explain partially the overall beneficial effects of Liraglutide in T2DM, especially that glucuronate interconversion pathway is known by its important roles in eliminating toxic and undesirable substances from the human body to maintain good health status. In addition, the metabolism of amino acids induced by Liraglutide could improve the function of immune cells, strengthening the immunity of T2DM patients. Also, Liraglutide induced the level of other metabolites that help in the defense mechanism against oxidative events. Overall, the findings of this study provide a deeper understanding of the underlying mechanisms involved in the beneficial effects of Liraglutide in T2DM from the metabolic aspect.
- Published
- 2024
- Full Text
- View/download PDF
3. Metabolomics and pathways analyses in traumatic brain injury animal model
- Author
-
Faleh Alqahtani, Thamer H. Albekairi, Shereen M. Aleidi, Reem H. AlMalki, Yousif S. Mohamed Ali, Mohammed M. Almutairi, Musaad A Alshammari, Abdullah K. Alshememry, and Anas M. Abdel Rahman
- Subjects
Traumatic brain injury ,Mass spectrometry ,Metabolomics ,Weight drop ,Science (General) ,Q1-390 - Abstract
Traumatic brain injury (TBI), a progressive neurological disease caused by physical injury to the brain tissue, impacting its functions. This study employed metabolomics based on untargeted mass spectrometry method to examine plasma specimens from well-established mouse models with induced TBI (n = 6) and control mice (n = 6). The objective was to assess the metabolomics profile and the associated biochemical pathways in TBI. There was a noticeable segregation between TBI and reference groups (Q2 = 0.342, R2 = 0.993), according to orthogonal partial least square-discriminant analysis, indicating significant difference in metabolic expression. Moreover, 102 metabolites were significantly altered in TBI mice; 59 were upregulated, while 43 were downregulated in TBI mice. Correspondingly, the TBI model showed a significant dysregulation in number of key metabolic pathways, including metabolism of glycerophospholipids, linoleic acid, glycine, serine, threonine, pyrimidine, tryptophan, nicotinate and nicotinamide. Additionally, isoleucyl-asparagine, 2′-deoxyinosine triphosphate, diglycosyl diacylglycerols (25:0/26/2), and phosphatidylethanolamine (24:0/22:4) demonstrated excellent performance for TBI detection with an area under the curve ≥ 0.8. This study identified putative plasma biomarkers of TBI and highlighted the dysregulated biochemical pathways, providing valuable clinical insights into TBI research.
- Published
- 2024
- Full Text
- View/download PDF
4. Metabolomic Effects of Liraglutide Therapy on the Plasma Metabolomic Profile of Patients with Obesity
- Author
-
Assim A. Alfadda, Anas M. Abdel Rahman, Hicham Benabdelkamel, Reem AlMalki, Bashayr Alsuwayni, Abdulaziz Alhossan, Madhawi M. Aldhwayan, Ghalia N. Abdeen, Alexander Dimitri Miras, and Afshan Masood
- Subjects
obesity ,liraglutide ,metabolomics ,mass spectrometry ,arachidonic acid ,biomarkers ,Microbiology ,QR1-502 - Abstract
Background: Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at changes in metabolite levels before and after liraglutide treatment in patients with obesity. To this end, in the present study we aimed to explore the changes in the plasma metabolomic profile, using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in patients with obesity. Methods: A single-center prospective study was undertaken to evaluate the effectiveness of 3 mg liraglutide therapy in twenty-three patients (M/F: 8/15) with obesity, mean BMI 40.81 ± 5.04 kg/m2, and mean age of 36 ± 10.9 years, in two groups: at baseline (pre-treatment) and after 12 weeks of treatment (post-treatment). An untargeted metabolomic profiling was conducted in plasma from the pre-treatment and post-treatment groups using LC-HRMS, along with bioinformatics analysis using ingenuity pathway analysis (IPA). Results: The metabolomics analysis revealed a significant (FDR p-value ≤ 0.05, FC 1.5) dysregulation of 161 endogenous metabolites (97 upregulated and 64 downregulated) with distinct separation between the two groups. Among the significantly dysregulated metabolites, the majority of them were identified as belonging to the class of oxidized lipids (oxylipins) that includes arachidonic acid and its derivatives, phosphorglycerophosphates, N-acylated amino acids, steroid hormones, and bile acids. The biomarker analysis conducted using MetaboAnalyst showed PGP (a21:0/PG/F1alpha), an oxidized lipid, as the first metabolite among the list of the top 15 biomarkers, followed by cysteine and estrone. The IPA analysis showed that the dysregulated metabolites impacted the pathway related to cell signaling, free radical scavenging, and molecular transport, and were focused around the dysregulation of NF-κB, ERK, MAPK, PKc, VEGF, insulin, and pro-inflammatory cytokine signaling pathways. Conclusions: The findings suggest that liraglutide treatment reduces inflammation and modulates lipid metabolism and oxidative stress. Our study contributes to a better understanding of the drug’s multifaceted impact on overall metabolism in patients with obesity.
- Published
- 2024
- Full Text
- View/download PDF
5. Label-free quantitative proteomics analysis for type 2 diabetes mellitus early diagnostic marker discovery using data-independent acquisition mass spectrometry (DIA-MS)
- Author
-
Refat M. Nimer, Mahmoud A. Alfaqih, Eman R. Shehabat, Muhammad Mujammami, and Anas M. Abdel Rahman
- Subjects
Medicine ,Science - Abstract
Abstract Type-2 diabetes mellitus (T2DM) therapy requires early diagnosis and complication avoidance. Unfortunately, current diagnostic markers do not meet these needs. Data-independent acquisition mass spectrometry (DIA-MS) offers a solution for clinical diagnosis, providing reliable and precise sample quantification. This study utilized DIA-MS to investigate proteomic differential expression in the serum of recently diagnosed T2DM patients. The study conducted a comparative protein expression analysis between healthy and recently diagnosed T2DM groups (discovery cohort). A candidate protein was then validated using enzyme-linked immune assay (ELISA) on serum samples collected from T2DM patients (n = 87) and healthy control (n = 60) (validation cohort). A total of 1074 proteins were identified, and 90 were significantly dysregulated between the two groups, including 32 newly associated with T2DM. Among these proteins, the expression of S100 calcium-binding protein A6 (S100A6) was validated by ELISA. It showed a significant increase in T2DM samples compared to the control group. It was evaluated as a biomarker using the receiver operating characteristic (ROC) curve, consistent with the DIA-MS results. Novel proteins are reported to be involved in the development and progression of T2DM. Further studies are required to investigate the differential expression of candidate marker proteins in a larger population of T2DM patients.
- Published
- 2023
- Full Text
- View/download PDF
6. Comparative Analysis of Breast Cancer Metabolomes Highlights Fascin’s Central Role in Regulating Key Pathways Related to Disease Progression
- Author
-
Reem H. AlMalki, Huda K. Al-Nasrallah, Alanoud Aldossry, Rayanah Barnawi, Samiyah Al-Khaldi, Sheema Almozyan, Mysoon M. Al-Ansari, Hazem Ghebeh, Anas M. Abdel Rahman, and Monther Al-Alwan
- Subjects
breast cancer ,metabolic pathways ,fascin ,untargeted metabolomics ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Omics technologies provide useful tools for the identification of novel biomarkers in many diseases, including breast cancer, which is the most diagnosed cancer in women worldwide. We and others have reported a central role for the actin-bundling protein (fascin) in regulating breast cancer disease progression at different levels. However, whether fascin expression promotes metabolic molecules that could predict disease progression has not been fully elucidated. Here, fascin expression was manipulated via knockdown (fascinKD+NORF) and rescue (fascinKD+FORF) in the naturally fascin-positive (fascinpos+NORF) MDA-MB-231 breast cancer cells. Whether fascin dysregulates metabolic profiles that are associated with disease progression was assessed using untargeted metabolomics analyses via liquid chromatography–mass spectrometry. Overall, 12,226 metabolic features were detected in the tested cell pellets. Fascinpos+NORF cell pellets showed 2510 and 3804 significantly dysregulated metabolites compared to their fascinKD+NORF counterparts. Fascin rescue (fascinKD+FORF) revealed 2710 significantly dysregulated cellular metabolites compared to fascinKD+NORF counterparts. A total of 101 overlapped cellular metabolites between fascinKD+FORF and fascinpos+NORF were significantly dysregulated in the fascinKD+NORF cells. Analysis of the significantly dysregulated metabolites by fascin expression revealed their involvement in the metabolism of sphingolipid, phenylalanine, tyrosine, and tryptophan biosynthesis, and pantothenate and CoA biosynthesis, which are critical pathways for breast cancer progression. Our findings of fascin-mediated alteration of metabolic pathways could be used as putative poor prognostic biomarkers and highlight other underlying mechanisms of fascin contribution to breast cancer progression.
- Published
- 2024
- Full Text
- View/download PDF
7. Editorial: Metabolomics in genetic and endocrinological diseases
- Author
-
Mohamed Abu-Farha, Hicham Benabdelkamel, Fabio Mazzotti, and Anas M. Abdel Rahman
- Subjects
metabolomics ,DNA methylation ,NAFLD ,mass spectrometry ,lipidomics ,Biology (General) ,QH301-705.5 - Published
- 2024
- Full Text
- View/download PDF
8. Exploratory Untargeted Metabolomics of Dried Blood Spot Samples from Newborns with Maple Syrup Urine Disease
- Author
-
Abeer Z. Alotaibi, Reem H. AlMalki, Maha Al Mogren, Rajaa Sebaa, Mohammad Alanazi, Minnie Jacob, Ahamd Alodaib, Ahmad Alfares, and Anas M. Abdel Rahman
- Subjects
inborn errors of metabolism (IEMs) ,maple syrup urine disease (MSUD) ,genetic testing ,newborn screening alloisoleucine ,methionine sulfoxide ,LysoPI ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.
- Published
- 2024
- Full Text
- View/download PDF
9. Demaghi, a polyherbal formulation, mitigates aluminum chloride-induced neurological impairment in mice: Insights from phytochemical analysis and behavioral assessment
- Author
-
Hassan Ali, Hafiz Usman, Waseem Ashraf, Faleh Alqahtani, Sana Javaid, Farhan Siddique, Muhammad Fawad Rasool, Imran Imran, Tanveer Ahmad, Anas M. Abdel Rahman, and Reem H. AlMalki
- Subjects
Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition as well as its neuroprotective claims of this widely used herbal tonic. The commercially available Demaghi product was chemically characterized for its phytocomposition. The mice were treated with two doses of Demaghi (DEMG 50 mg and 100 mg/kg/day), and the effects of its prolonged exposure on animal anxiety, memory, and depression were noted through a series of behavioral tests in the AlCl3-induced memory deficient mice model. Besides that, dissected brains were biochemically analyzed for oxidative stress markers and acetylcholinesterase activity, as well as histopathological changes. The study outcomes showed that DEMG (100 mg/kg/day) has prominent anti-anxiety effects, memory-enhancing properties, and anti-depressants effects observed in the AlCl3-induced memory-deficient mice model. Biochemical assays also showed a greater decrease in oxidative stress of tested animals treated with 100 mg/kg/day of DEMG. The histopathological analysis also revealed that administration of DEMG reduced the AlCl3-induced toxicity. UPLC-MS results revealed the presence of many phytoconstituents, which showed to support cholinergic signaling in in-silico studies. The current research validates the neurological benefits of Demaghi for memory-boosting properties. The phytocompounds present in Demaghi exert neuroprotective effects, possibly by enhancing the cholinergic neurotransmission and combating the neurotoxin-induced oxidative stress.
- Published
- 2023
- Full Text
- View/download PDF
10. Metabolomic Profiling of Blood Plasma in Females with Hyperplasia and Endometrial Cancer
- Author
-
Hicham Benabdelkamel, Malak A. Jaber, Khalid Akkour, Reem H. AlMalki, Assim A. Alfadda, Afshan Masood, Salini Scaria Joy, Hani Alhalal, Moudi A. Alwehaibi, Maria Arafah, Eman Alshehri, and Anas M. Abdel Rahman
- Subjects
endometrial cancer ,hyperplasia (HP) ,metabolomics ,LC-HRMS ,energy metabolism ,Microbiology ,QR1-502 - Abstract
Uterine cancer is the most prevalent gynecologic malignancy in women worldwide. Endometrial cancer (EC) has an 81% five-year survival rate, depending on disease stage and time of diagnosis. While endometrial cancer is largely treatable when detected early, no established screening techniques are available in clinical practice. As a result, one of the most significant issues in the medical field is the development of novel ways for early cancer identification, which could boost treatment success rates. Liquid chromatography–high-resolution mass spectrometry (LC-HRMS)-based metabolomics was employed to explore the metabolomic markers and pathways unique to this cancer type and link them to the benign endometrial hyperplasia that may progress to cancer in 5% to 25% of patients. The study involved 59 postmenopausal participants, 20 with EC type 1, 20 with benign hyperplasia, and 19 healthy participants. Metabolite distribution changes were analyzed, and 338 of these features were dysregulated and significant. The first two main components, PC1 and PC2, were responsible for 11.5% and 12.2% of the total metabolites, respectively. Compared with the control group (CO), EC samples had 203 differentially expressed metabolites (180 upregulated and 23 downregulated); in hyperplasia (HP), 157 metabolites were dysregulated (127 upregulated and 30 downregulated) compared to the CO group while 21 metabolites exhibited differential regulation (16 upregulated and 5 downregulated) in EC plasma samples compared to the HP group. Hyperplasia samples exhibited similar metabolic changes to those reported in cancer, except for alterations in triglyceride levels, 7a,12 b-dihydroxy-5b-Cholan-24-oic acid, and Hept-2-enedioyl carnitine levels. The metabolites N-heptanoyl glycine and -(Methylthio)-2,3-isopentyl phosphate and formimino glutamic acid can be specific markers for hyperplasia conditions and dimethyl phosphatidyl ethanolamine and 8-isoprostaglandin E2 can be specific markers for EC conditions. Metabolic activities rely on mitochondrial oxidative phosphorylation for energy generation. The changes in metabolites identified in our study indicate that endometrial cancer cells adopt alternative strategies to increase energy production to meet the energy demand, thereby supporting proliferation.
- Published
- 2024
- Full Text
- View/download PDF
11. Lipidomics Profiling of Metformin-Induced Changes in Obesity and Type 2 Diabetes Mellitus: Insights and Biomarker Potential
- Author
-
Muhammad Mujammami, Shereen M. Aleidi, Adriana Zardini Buzatto, Awad Alshahrani, Reem H. AlMalki, Hicham Benabdelkamel, Mohammed Al Dubayee, Liang Li, Ahmad Aljada, and Anas M. Abdel Rahman
- Subjects
lipidomics ,high resolution mass spectrometry ,metformin ,type 2 diabetes mellitus (T2DM) ,obesity ,biomarker ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In the current study, an untargeted lipidomic analytical approach was used to investigate the alterations in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese diabetic patients, and to examine the alterations associated with metformin administration. A total of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the obese group. Metformin administration in obese diabetic patients was associated with significant dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs), one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST), and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers a new platform for potential biomarkers for the progression of diabetes and treatment response in obese patients.
- Published
- 2023
- Full Text
- View/download PDF
12. Biomarker discovery in galactosemia: Metabolomics with UPLC/HRMS in dried blood spots
- Author
-
Ahmad N. Alodaib, Refat M. Nimer, Rowan Alhumaidy, Alaa Alhenaky, Mai Abdel Jabar, Reem H. AlMalki, and Anas M. Abdel Rahman
- Subjects
biomarker ,dried blood spot ,galactosemia ,metabolomics ,newborn screening (NBS) ,ultra-performance liquid chromatography ,Biology (General) ,QH301-705.5 - Abstract
Introduction:Galactosemia (GAL) is a genetic disorder that results in disturbances in galactose metabolism and can lead to life-threatening complications. However, the underlying pathophysiology of long-term complications in GAL remains poorly understood.Methods: In this study, a metabolomics approach using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry was used to investigate metabolomic changes in dried blood spots of 15 patients with GAL and 39 healthy individuals.Results: The study found that 2,819 metabolites underwent significant changes in patients with GAL compared to the control group. 480 human endogenous metabolites were identified, of which 209 and 271 were upregulated and downregulated, respectively. PA (8:0/LTE4) and ganglioside GT1c (d18:0/20:0) metabolites showed the most significant difference between GAL and the healthy group, with an area under the curve of 1 and 0.995, respectively. Additionally, the study identified potential biomarkers for GAL, such as 17-alpha-estradiol-3-glucuronide and 16-alpha-hydroxy DHEA 3-sulfatediphosphate.Conclusion: This metabolomics study deepened the understanding of the pathophysiology of GAL and presented potential biomarkers that might serve as prognostic biomarkers to monitor the progression or support the clinical diagnosis of GAL.
- Published
- 2023
- Full Text
- View/download PDF
13. Proteomics Investigation of the Impact of the Enterococcus faecalis Secretome on MCF-7 Tumor Cells
- Author
-
Moudi A. Alwehaibi, Mysoon M. Al-Ansari, Assim A. Alfadda, Reem Al-Malki, Afshan Masood, Anas M. Abdel Rahman, and Hicham Benabdelkamel
- Subjects
MCF-7 cell line ,microbiota ,proteomic profile ,breast cancer ,Enterococcus faecalis ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Breast cancer is the most prevalent form of cancer among women. The microenvironment of a cancer tumor is surrounded by various cells, including the microbiota. An imbalance between microbes and their host may contribute to the development and spread of breast cancer. Therefore, the objective of this study is to investigate the influence of Enterococcus faecalis on a breast cancer cell line (MCF-7) to mimic the luminal A subtype of breast cancer, using an untargeted proteomics approach to analyze the proteomic profiles of breast cancer cells after their treatment with E. faecalis in order to understand the microbiome and its role in the development of cancer. The breast cancer cell line MCF-7 was cultured and then treated with a 10% bacterial supernatant at two time points (24 h and 48 h) at 37 °C in a humidified incubator with 5% CO2. Proteins were then extracted and separated using two-dimensional difference (2D-DIGE) gel electrophoresis, and the statistically significant proteins (p-value < 0.05, fold change > 1.5) were identified via matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). The protein fingerprints showed a differential protein expression pattern in the cells treated with E. faecalis for 24 and 48 h compared with the control. We found 58 statistically significant proteins changes in the MCF-7 breast cancer cells affected by E. faecalis. Kilin and transgelin were upregulated after 24 h of treatment and could be used as diagnostic and prognostic markers for breast cancer. In addition, another protein involved in the inhibition of cell proliferation was coiled-coil domain-containing protein 154. The protein markers identified in this study may serve as possible biomarkers for breast cancer progression. This promotes their future uses as important therapeutic goals in the treatment and diagnosis of cancer and increases our understanding of the breast microbiome and its role in the development of cancer.
- Published
- 2023
- Full Text
- View/download PDF
14. Proteomic Profiling Identifies Distinct Regulation of Proteins in Obese Diabetic Patients Treated with Metformin
- Author
-
Awad Alshahrani, Ahmad Aljada, Afshan Masood, Muhammad Mujammami, Assim A. Alfadda, Mohthash Musambil, Ibrahim O. Alanazi, Mohammed Al Dubayee, Anas M. Abdel Rahman, and Hicham Benabdelkamel
- Subjects
metformin ,proteomics ,obesity ,type 2 diabetes mellitus ,mass spectrometry ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Background: Obesity and type 2 diabetes mellitus (T2DM) are characterized by underlying low-grade chronic inflammation. Metformin has been used as the first line of therapy in T2DM as it decreases hepatic glucose production and glucose intestinal absorption, enhances insulin sensitivity and weight loss, and is known to ameliorate inflammation. The mechanisms through which metformin exerts its effect remain unclear. Proteomics has emerged as a unique approach to explore the biological changes associated with diseases, including T2DM. It provides insight into the circulating biomarkers/mediators which could be utilized for disease screening, diagnosis, and prognosis. Methods: This study evaluated the proteomic changes in obese (Ob), obese diabetics (OD), and obese diabetic patients on metformin (ODM) using a 2D DIGE MALDI-TOF mass spectrometric approach. Results: Significant changes in sixteen plasma proteins (15 up and 1 down, ANOVA, p ≤ 0.05; fold change ≥ 1.5) were observed in the ODM group when compared to the Ob and OD groups. Bioinformatic network pathway analysis revealed that the majority of these altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. Conclusions: Our study provides important information about the possible biomarkers altered by metformin treatment in obese patients with and without T2DM. These altered plasma proteins are involved in distinct pathways involving acute-phase response, inflammation, and oxidative response and were centered around HNF4A, ERK, JNK, and insulin signaling pathways. The presented proteomic profiling approach may help in identifying potential biomarkers/mediators affected by metformin treatment in T2DM and inform the understanding of metformin’s mechanisms of action.
- Published
- 2023
- Full Text
- View/download PDF
15. The metabolomics approach revealed a distinctive metabolomics pattern associated with hyperthyroidism treatment
- Author
-
Malak A. Jaber, Hicham Benabdelkamel, Lina A. Dahabiyeh, Afshan Masood, Reem H. AlMalki, Mohthash Musambil, Assim A. Alfadda, and Anas M. Abdel Rahman
- Subjects
hyperthyroidism ,carbimazole ,metabolomics ,acylcarnitines ,tryptophan metabolism ,redox hemostasis ,Diseases of the endocrine glands. Clinical endocrinology ,RC648-665 - Abstract
BackgroundHyperthyroidism is characterized by increased thyroid hormone production, which impacts various processes, including metabolism and energy expenditure. Yet, the underlying mechanism and subsequent influence of these changes are unknown. Metabolomics is a broad analytical method that enables qualitative and quantitative examination of metabolite level changes in biological systems in response to various stimuli, pathologies, or treatments.ObjectivesThis study uses untargeted metabolomics to explore the potential pathways and metabolic patterns associated with hyperthyroidism treatment.MethodsThe study consisted of 20 patients newly diagnosed with hyperthyroidism who were assessed at baseline and followed up after starting antithyroid treatment. Two blood samples were taken from each patient, pre (hyperthyroid state) and post-treatment (euthyroid state). Hyperthyroid and euthyroid states were identified based on thyroxine and thyroid-stimulating hormone levels. The metabolic alteration associated with antithyroid therapy was investigated using liquid chromatography- high-resolution mass spectrometry. The untargeted metabolomics data was analyzed using both univariate and multivariate analyses using MetaboAnalyst v5.0. The significant metabolic pattern was identified using the lab standard pipeline, which included molecular annotation in the Human Metabolome Database, LipidMap, LipidBlast, and METLIN. The identified metabolites were examined using pathway and network analyses and linked to cellular metabolism.ResultsThe results revealed a strong group separation between the pre- and post-hyperthyroidism treatment (Q2 = 0.573, R2 = 0.995), indicating significant differences in the plasma metabolome after treatment. Eighty-three mass ions were significantly dysregulated, of which 53 and 30 characteristics were up and down-regulated in the post-treatment compared to the pre-treatment group, respectively. The medium-chain acylcarnitines, octanoylcarnitine, and decanoylcarnitine, previously found to rise in hyperthyroid patients, were among the down-regulated metabolites, suggesting that their reduction could be a possible biomarker for monitoring euthyroid restoration. Kynurenine is a downregulated tryptophan metabolite, indicating that the enzyme kynurenine 3-hydroxylase, inhibited in hyperthyroidism, is back functioning. L-cystine, a cysteine dimer produced from cysteine oxidation, was among the down-regulated metabolites, and its accumulation is considered a sign of oxidative stress, which was reported to accompany hyperthyroidism; L-cystine levels dropped, this suggests that the plasma level of L-cystine can be used to monitor the progress of euthyroid state restoration.ConclusionThe plasma metabolome of patients with hyperthyroidism before and after treatments revealed differences in the abundance of several small metabolites. Our findings add to our understanding of hyperthyroidism’s altered metabolome and associated metabolic processes and shed light on acylcarnitines as a new biomarker for treatment monitoring in conjunction with thyroxine and thyroid-stimulating hormone.
- Published
- 2022
- Full Text
- View/download PDF
16. Targeted Metabolomics Analysis of Individuals Carrying the ANGPTL8 R59W Variant
- Author
-
Mohamed Abu-Farha, Shibu Joseph, Anwar Mohammad, Arshad Channanath, Ibrahim Taher, Fahd Al-Mulla, Muhammad Mujammami, Thangavel Alphonse Thanaraj, Jehad Abubaker, and Anas M. Abdel Rahman
- Subjects
ANGPTL8 ,R59W variant ,rs2278426 SNP ,metabolites ,metabolome ,inflammation ,Microbiology ,QR1-502 - Abstract
ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.
- Published
- 2023
- Full Text
- View/download PDF
17. Metabolic Alteration of MCF-7 Cells upon Indirect Exposure to E. coli Secretome: A Model of Studying the Microbiota Effect on Human Breast Tissue
- Author
-
Reem H. AlMalki, Malak A. Jaber, Mysoon M. Al-Ansari, Khalid M. Sumaily, Monther Al-Alwan, Essa M. Sabi, Abeer K. Malkawi, and Anas M. Abdel Rahman
- Subjects
microbiome ,E. coli secretome ,cancer ,MCF-7 cells ,metabolites ,metabolomics ,Microbiology ,QR1-502 - Abstract
According to studies, the microbiome may contribute to the emergence and spread of breast cancer. E. coli is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of E. coli secretome free of cells on MCF-7 metabolism. Liquid chromatography–mass spectrometry (LC-MS) metabolomics was used to study the E. coli secretome and its role in MCF-7 intra- and extracellular metabolites. A comparison was made between secretome-exposed cells and unexposed controls. Our analysis revealed significant alterations in 31 intracellular and 55 extracellular metabolites following secretome exposure. Several metabolic pathways, including lactate, aminoacyl-tRNA biosynthesis, purine metabolism, and energy metabolism, were found to be dysregulated upon E. coli secretome exposure. E. coli can alter the breast cancer cells’ metabolism through its secretome which disrupts key metabolic pathways of MCF-7 cells. These microbial metabolites from the secretome hold promise as biomarkers of drug resistance or innovative approaches for cancer treatment, either as standalone therapies or in combination with other medicines.
- Published
- 2023
- Full Text
- View/download PDF
18. A Distinctive Metabolomics Profile and Potential Biomarkers for Very Long Acylcarnitine Dehydrogenase Deficiency (VLCADD) Diagnosis in Newborns
- Author
-
Rajaa Sebaa, Reem H. AlMalki, Wafaa Alseraty, and Anas M. Abdel Rahman
- Subjects
VLCADD ,newborns ,untargeted metabolomics profiling ,potential biomarkers ,Microbiology ,QR1-502 - Abstract
Very long-chain acylcarnitine dehydrogenase deficiency (VLCADD) is a rare inherited metabolic disorder associated with fatty acid β-oxidation and characterized by genetic mutations in the ACADVL gene and accumulations of acylcarnitines. VLCADD, developed in neonates or later adults, can be diagnosed using newborn bloodspot screening (NBS) or genetic sequencing. These techniques have limitations, such as a high false discovery rate and variants of uncertain significance (VUS). As a result, an extra diagnostic tool is needed to deliver improved performance and health outcomes. As VLCADD is linked with metabolic disturbance, we postulated that newborn patients with VLCADD could display a distinct metabolomics pattern compared to healthy newborns and other disorders. Herein, we applied an untargeted metabolomics approach using liquid chromatography–high resolution mass spectrometry (LC-HRMS) to measure the global metabolites in dried blood spot (DBS) cards collected from VLCADD newborns (n = 15) and healthy controls (n = 15). Two hundred and six significantly dysregulated endogenous metabolites were identified in VLCADD, in contrast to healthy newborns. Fifty-eight and one hundred and eight up- and down-regulated endogenous metabolites were involved in several pathways such as tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, amino sugar and nucleotide sugar metabolism, pyrimidine metabolism and pantothenate, and CoA biosynthesis. Furthermore, biomarker analyses identified 3,4-Dihydroxytetradecanoylcarnitine (AUC = 1), PIP (20:1)/PGF1alpha) (AUC = 0.982), and PIP2 (16:0/22:3) (AUC = 0.978) as potential metabolic biomarkers for VLCADD diagnosis. Our findings showed that compared to healthy newborns, VLCAADD newborns exhibit a distinctive metabolic profile, and identified potential biomarkers that can be used for early diagnosis, which improves the identification of the affected patients earlier. This allows for the timely administration of proper treatments, leading to improved health. However, further studies with large independent cohorts of VLCADD patients with different ages and phenotypes need to be studied to validate our potential diagnostic biomarkers and their specificity and accuracy during early life.
- Published
- 2023
- Full Text
- View/download PDF
19. Untargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots
- Author
-
Rajaa Sebaa, Maha AlMogren, Wafaa Alseraty, and Anas M. Abdel Rahman
- Subjects
MCADD ,DBS ,newborns ,untargeted metabolomics ,mass-spectrometry ,metabolic biomarkers ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these methods have limitations, such as false negatives or positives in NBS and the variants of uncertain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for inherited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations. We performed an untargeted metabolic profiling of dried blood spots (DBS) from MCADD newborns (n = 14) and healthy controls (n = 14) to discover potential metabolic biomarkers/pathways associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to analyze the metabolomics data, and pathway and biomarker analyses were also performed on the significantly identified endogenous metabolites. The MCADD newborns had 1034 significantly dysregulated metabolites compared to healthy newborns (moderated t-test, no correction, p-value ≤ 0.05, FC 1.5). A total of 23 endogenous metabolites were up-regulated, while 84 endogenous metabolites were down-regulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most affected pathways. Potential metabolic biomarkers for MCADD were PGP (a21:0/PG/F1alpha) and glutathione, with an area under the curve (AUC) of 0.949 and 0.898, respectively. PGP (a21:0/PG/F1alpha) was the first oxidized lipid in the top 15 biomarker list affected by MCADD. Additionally, glutathione was chosen to indicate oxidative stress events that could happen during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative stress events as signs of the disease. However, further validations of these biomarkers are needed in future studies to ensure their accuracy and reliability as complementary markers with established MCADD markers for clinical diagnosis.
- Published
- 2023
- Full Text
- View/download PDF
20. E. coli Secretome Metabolically Modulates MDA-MB-231 Breast Cancer Cells’ Energy Metabolism
- Author
-
Reem H. AlMalki, Rajaa Sebaa, Mysoon M. Al-Ansari, Monther Al-Alwan, Moudi A. Alwehaibi, and Anas M. Abdel Rahman
- Subjects
microbiome ,E. coli secretome ,breast cancer cells ,metabolites ,metabolomics ,high-resolution mass spectrometry ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Breast cancer (BC) is commonly diagnosed in women. BC cells are associated with altered metabolism, which is essential to support their energetic requirements, cellular proliferation, and continuous survival. The altered metabolism of BC cells is a result of the genetic abnormalities of BC cells. Risk factors can also enhance it, including age, lifestyle, hormone disturbances, etc. Other unknown BC-promoting risk factors are under scientific investigation. One of these investigated factors is the microbiome. However, whether the breast microbiome found in the BC tissue microenvironment can impact BC cells has not been studied. We hypothesized that E. coli, part of a normal breast microbiome with more presence in BC tissue, secretes metabolic molecules that could alter BC cells’ metabolism to maintain their survival. Thus, we directly examined the impact of the E. coli secretome on the metabolism of BC cells in vitro. MDA-MB-231 cells, an in vitro model of aggressive triple-negative BC cells, were treated with the E. coli secretome at different time points, followed by untargeted metabolomics analyses via liquid chromatography–mass spectrometry to identify metabolic alterations in the treated BC cell lines. MDA-MB-231 cells that were not treated were used as controls. Moreover, metabolomic analyses were performed on the E. coli secretome to profile the most significant bacterial metabolites affecting the metabolism of the treated BC cell lines. The metabolomics results revealed about 15 metabolites that potentially have indirect roles in cancer metabolism that were secreted from E. coli in the culture media of MDA-MB-231 cells. The cells treated with the E. coli secretome showed 105 dysregulated cellular metabolites compared to controls. The dysregulated cellular metabolites were involved in the metabolism of fructose and mannose, sphingolipids, amino acids, fatty acids, amino sugar, nucleotide sugar, and pyrimidine, which are vital pathways required for the pathogenesis of BC. Our findings are the first to show that the E. coli secretome modulates the BC cells’ energy metabolism, highlighting insights into the possibility of altered metabolic events in BC tissue in the actual BC tissue microenvironment that are potentially induced by the local bacteria. Our study provides metabolic data that could be as a basis for future studies searching for the underlying mechanisms mediated by bacteria and their secretome to alter the metabolism of BC cells.
- Published
- 2023
- Full Text
- View/download PDF
21. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients
- Author
-
Minnie Jacob, Afshan Masood, and Anas M. Abdel Rahman
- Subjects
signal transducer and activator of transcription 3 (STAT3) ,phosphoglucomutase 3 (PGM3) ,dedicator of cytokinesis 8 (DOCK8) ,hyper IgE syndromes (HIES) ,multi-omics ,metabolomics ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients’ metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.
- Published
- 2023
- Full Text
- View/download PDF
22. Proteomics Profiling to Distinguish DOCK8 Deficiency From Atopic Dermatitis
- Author
-
Minnie Jacob, Afshan Masood, Zakiya Shinwari, Mai Abdel Jabbar, Hamoud Al-Mousa, Rand Arnaout, Bandar AlSaud, Majed Dasouki, Ayodele A. Alaiya, and Anas M. Abdel Rahman
- Subjects
atopic dermatitis ,dedicator of cytokinesis (DOCK8) ,hyper IgE syndrome (HIES) ,label-free proteomics ,biomarker ,multiple reaction monitoring ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Dedicator of cytokinesis 8 deficiency is an autosomal recessive primary immune deficiency disease belonging to the group of hyperimmunoglobulinemia E syndrome (HIES). The clinical phenotype of dedicator of cytokinesis 8 (DOCK8) deficiency, characterized by allergic manifestations, increased infections, and increased IgE levels, overlaps with the clinical presentation of atopic dermatitis (AD). Despite the identification of metabolomics and cytokine biomarkers, distinguishing between the two conditions remains clinically challenging. The present study used a label-free untargeted proteomics approach using liquid-chromatography mass spectrometry with network pathway analysis to identify the differentially regulated serum proteins and the associated metabolic pathways altered between the groups. Serum samples from DOCK8 (n = 10), AD (n = 9) patients and healthy control (Ctrl) groups (n = 5) were analyzed. Based on the proteomics profile, the PLS-DA score plot between the three groups showed a clear group separation and sample clustering (R2 = 0.957, Q2 = 0.732). Significantly differentially abundant proteins (p < 0.05, FC cut off 2) were identified between DOCK8-deficient and AD groups relative to Ctrl (n = 105, and n = 109) and between DOCK8-deficient and AD groups (n = 85). Venn diagram analysis revealed a differential regulation of 24 distinct proteins from among the 85 between DOCK8-deficient and AD groups, including claspin, haptoglobin-related protein, immunoglobulins, complement proteins, fibulin, and others. Receiver-operating characteristic curve (ROC) analysis identified claspin and haptoglobin-related protein, as potential biomarkers with the highest sensitivity and specificity (AUC = 1), capable of distinguishing between patients with DOCK8 deficiency and AD. Network pathway analysis between DOCK8-deficiency and AD groups revealed that the identified proteins centered around the dysregulation of ERK1/2 signaling pathway. Herein, proteomic profiling of DOCK8-deficiency and AD groups was carried out to determine alterations in the proteomic profiles and identify a panel of the potential proteomics biomarker with possible diagnostic applications. Distinguishing between DOCK8-deficiency and AD will help in the early initiation of treatment and preventing complications.
- Published
- 2021
- Full Text
- View/download PDF
23. Metabolomics Profiling of Nephrotic Syndrome towards Biomarker Discovery
- Author
-
Minnie Jacob, Refat M. Nimer, Mohamad S. Alabdaljabar, Essa M. Sabi, Mysoon M. Al-Ansari, Maged Housien, Khalid M. Sumaily, Lina A. Dahabiyeh, and Anas M. Abdel Rahman
- Subjects
biomarker ,liquid chromatography–mass spectrometry ,nephrotic syndrome ,metabolomics ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Nephrotic syndrome (NS) is a kidney illness characterized by excessive proteinuria, hypoalbuminemia, edema, and hyperlipidemia, which may lead to kidney failure and necessitate renal transplantation. End-stage renal disease, cardiovascular issues, and mortality are much more common in those with NS. Therefore, the present study aimed to identify potential new biomarkers associated with the pathogenesis and diagnosis of NS. The liquid chromatography–mass spectrometry (LC–MS) metabolomics approach was applied to profile the metabolome of human serum of patients with NS. A total of 176 metabolites were significantly altered in NS compared to the control. Arginine, proline, and tryptophan metabolism; arginine, phenylalanine, tyrosine, and tryptophan biosynthesis were the most common metabolic pathways dysregulated in NS. Furthermore, alanyl-lysine and isoleucyl-threonine had the highest discrimination between NS and healthy groups. The candidate biomarkers may lead to understanding the possible metabolic alterations associated with NS and serve as potential diagnostic biomarkers.
- Published
- 2022
- Full Text
- View/download PDF
24. Lipidomics Profiling of Patients with Low Bone Mineral Density (LBMD)
- Author
-
Shereen M. Aleidi, Mysoon M. Al-Ansari, Eman A. Alnehmi, Abeer K. Malkawi, Ahmad Alodaib, Mohamed Alshaker, Hicham Benabdelkamel, and Anas M. Abdel Rahman
- Subjects
lipidomic ,bone mineral density (BMD) ,osteoporosis ,osteopenia ,mass spectrometry ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
The relationship between lipid metabolism and bone mineral density (BMD) is still not fully elucidated. Despite the presence of investigations using osteoporotic animal models, clinical studies in humans are limited. In this work, untargeted lipidomics profiling using liquid chromatography-mass spectrometry (LC-MS) analysis of human serum samples was performed to identify the lipidomics profile associated with low bone mineral density (LBMD), with a subsequent examination of potential biomarkers related to OP risk prediction or progression. A total of 69 participants were recruited for this cohort study, including the osteoporotic group (OP, n = 25), osteopenia group (ON, n = 22), and control (Ctrl, n = 22). The LBMD group included OP and ON patients. The lipidomics effect of confounding factors such as age, gender, lipid profile, body mass index (BMD), chronic diseases, and medications was excluded from the dataset. The results showed a clear group separation and clustering between LBMD and Ctrl (Q2 = 0.944, R2 = 0.991), indicating a significant difference in the lipids profile. In addition, 322 putatively identified lipid molecules were dysregulated, with 163 up- and 159 down-regulated in LBMD, compared with the Ctrl. The most significantly dysregulated subclasses were phosphatidylcholines (PC) (n = 81, 25.16% of all dysregulated lipids 322), followed by triacylglycerol (TG) (n = 65, 20.19%), and then phosphatidylethanolamine (PE) (n = 40, 12.42%). In addition, groups of glycerophospholipids, including LPC (7.45%), LPE (5.59%), and PI (2.48%) were also dysregulated as of LBMD. These findings provide insights into the lipidomics alteration involved in bone remodeling and LBMD. and may drive the development of therapeutic targets and nutritional strategies for OP management.
- Published
- 2022
- Full Text
- View/download PDF
25. Lipids Alterations Associated with Metformin in Healthy Subjects: An Investigation Using Mass Spectrometry Shotgun Approach
- Author
-
Lina A. Dahabiyeh, Muhammad Mujammami, Reem H. AlMalki, Tawfiq Arafat, Hicham Benabdelkamel, Assim A. Alfadda, and Anas M. Abdel Rahman
- Subjects
metformin ,arachidonic acid ,sphingosine-1-phosphate ,hydroxyeicosatetraenoic acids (HETE) ,glycerophospholipid ,cancer ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Metformin is an orally effective insulin-sensitizing drug widely prescribed for treating type 2 diabetes mellitus (T2DM). Metformin has been reported to alter lipid metabolism. However, the molecular mechanisms behind its impact on lipid metabolism remain partially explored and understood. In the current study, mass spectrometry-based lipid profiling was used to investigate the lipidomic changes in the serum of 26 healthy individuals after a single-dose intake of metformin. Samples were analyzed at five-time points: preadministration, before the maximum concentration of metformin (Cmax), Cmax, after Cmax, and 36 h post-administration. A total of 762 molecules were significantly altered between the five-time points. Based on a comparison between baseline level and Cmax, metformin significantly increased and decreased the level of 33 and 192 lipids, respectively (FDR ≤ 0.05 and fold change cutoff of 1.5). The altered lipids are mainly involved in arachidonic acid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism. Furthermore, several lipids acted in an opposed or similar manner to metformin levels and included fatty acyls, sterol lipids, glycerolipids, and glycerophospholipids. The significantly altered lipid species pointed to fundamental lipid signaling pathways that could be linked to the pleiotropic effects of metformin in T2DM, insulin resistance, polycystic ovary syndrome, cancer, and cardiovascular diseases.
- Published
- 2022
- Full Text
- View/download PDF
26. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis
- Author
-
Mysoon M. Al-Ansari, Shereen M. Aleidi, Afshan Masood, Eman A. Alnehmi, Mai Abdel Jabar, Maha Almogren, Mohammed Alshaker, Hicham Benabdelkamel, and Anas M. Abdel Rahman
- Subjects
proteomics ,mass spectrometry ,bone mineral density (BMD) ,osteoporosis ,osteopenia ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients’ proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.
- Published
- 2022
- Full Text
- View/download PDF
27. A Metabolic Pattern in Healthy Subjects Given a Single Dose of Metformin: A Metabolomics Approach
- Author
-
Lina A. Dahabiyeh, Muhammad Mujammami, Tawfiq Arafat, Hicham Benabdelkamel, Assim A. Alfadda, and Anas M. Abdel Rahman
- Subjects
metabolomics ,metformin ,branched-chain amino acids ,mass spectrometry ,glycerophospholipid ,eicosanoids ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Metformin is a widely prescribed medication for the treatment of type 2 diabetes mellitus (T2DM). It possesses effective roles in various disorders, including cancer, dyslipidemia, and obesity. However, the underlying mechanisms of metformin's multiple benefits are not fully understood. Herein, a mass spectrometry-based untargeted metabolomics approach was used to investigate the metabolic changes associated with the administration of a single dose of metformin in the plasma of 26 healthy subjects at five-time points; pre-dose, before the maximum concentration of metformin (Cmax), Cmax, after Cmax, and 36 h post-dose. A total of 111 metabolites involved in various biochemical processes were perturbed, with branched-chain amino acid (BCAA) being the most significantly altered pathway. Additionally, the Pearson similarity test revealed that 63 metabolites showed a change in their levels dependent on metformin level. Out of these 63, the level of 36 metabolites was significantly altered by metformin. Significantly altered metformin-dependent metabolites, including hydroxymethyl uracil, propionic acid, glycerophospholipids, and eicosanoids, pointed to fundamental biochemical processes such as lipid network signaling, energy homeostasis, DNA lesion repair mechanisms, and gut microbiota functions that could be linked to the multiple beneficial roles of metformin. Thus, the distinctive metabolic pattern linked to metformin administration can be used as a metabolic signature to predict the potential effect and mechanism of actions of new chemical entities during drug development.
- Published
- 2021
- Full Text
- View/download PDF
28. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer
- Author
-
Khalid Akkour, Ibrahim O. Alanazi, Assim A. Alfadda, Hani Alhalal, Afshan Masood, Mohthash Musambil, Anas M. Abdel Rahman, Moudi A. Alwehaibi, Maria Arafah, Ali Bassi, and Hicham Benabdelkamel
- Subjects
uterus ,endometrial cancer ,tissue ,proteomics ,hyperplasia ,2D-DIGE ,Cytology ,QH573-671 - Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
- Published
- 2022
- Full Text
- View/download PDF
29. Dystrophin Protein Quantification as a Duchenne Muscular Dystrophy Diagnostic Biomarker in Dried Blood Spots Using Multiple Reaction Monitoring Tandem Mass Spectrometry: A Preliminary Study
- Author
-
Refat M. Nimer, Khalid M. Sumaily, Arwa Almuslat, Mai Abdel Jabar, Essa M. Sabi, Mohammad A. Al-Muhaizea, and Anas M. Abdel Rahman
- Subjects
dystrophin ,Duchenne muscular dystrophy (DMD) ,diagnostic biomarker ,liquid chromatography–tandem spectrometry (LC–MS/MS) ,multiple reaction monitoring (MRM) ,dried blood spot (DBS) ,Organic chemistry ,QD241-441 - Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this protein is completely halted. Therefore, circulating dystrophin protein could be a promising biomarker of DMD disease. Current methods for diagnosing DMD have sensitivity, specificity, and reproducibility limitations. Herein, a quantitative liquid chromatography–tandem spectrometry (LC–MS/MS) technique in multiple reaction monitoring (MRM) mode was designed and validated for accurate dystrophin protein measurement in a dried blood spot (DBS). The method was successfully validated on the basis of international guidelines regarding calibration curves, precision, and accuracy. In addition, patients and healthy controls were used to test the amount of dystrophin protein circulating in DBS samples as a potential biomarker for DMD disorders. DMD patients were found to have considerably lower levels than controls. To the best of our knowledge, this is the first study to report dystrophin levels in DBS through LC–MS/MS as a diagnostic marker for DMD to the proposed MRM method, providing a highly specific and sensitive approach to dystrophin quantification in a DBS that can be applied in DMD screening.
- Published
- 2022
- Full Text
- View/download PDF
30. Obesity Connected Metabolic Changes in Type 2 Diabetic Patients Treated With Metformin
- Author
-
Shereen M. Aleidi, Lina A. Dahabiyeh, Xinyun Gu, Mohammed Al Dubayee, Awad Alshahrani, Hicham Benabdelkamel, Muhammad Mujammami, Liang Li, Ahmad Aljada, and Anas M. Abdel Rahman
- Subjects
metabolomics ,metformin ,obesity ,body mass index-BMI ,type 2 diabete mellitus ,mass spectrometry-LC-MS/MS ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Metformin is widely used in the treatment of Type 2 Diabetes Mellitus (T2DM). However, it is known to have beneficial effects in many other conditions, including obesity and cancer. In this study, we aimed to investigate the metabolic effect of metformin in T2DM and its impact on obesity. A mass spectrometry (MS)-based metabolomics approach was used to analyze samples from two cohorts, including healthy lean and obese control, and lean as well as obese T2DM patients on metformin regimen in the last 6 months. The results show a clear group separation and sample clustering between the study groups due to both T2DM and metformin administration. Seventy-one metabolites were dysregulated in diabetic obese patients (30 up-regulated and 41 down-regulated), and their levels were unchanged with metformin administration. However, 30 metabolites were dysregulated (21 were up-regulated and 9 were down-regulated) and then restored to obese control levels by metformin administration in obese diabetic patients. Furthermore, in obese diabetic patients, the level of 10 metabolites was dysregulated only after metformin administration. Most of these dysregulated metabolites were dipeptides, aliphatic amino acids, nucleic acid derivatives, and urea cycle components. The metabolic pattern of 62 metabolites was persistent, and their levels were affected by neither T2DM nor metformin in obesity. Interestingly, 9 metabolites were significantly dysregulated between lean and obese cohorts due to T2DM and metformin regardless of the obesity status. These include arginine, citrulline, guanidoacetic acid, proline, alanine, taurine, 5-hydroxyindoleacetic acid, and 5-hydroxymethyluracil. Understanding the metabolic alterations taking place upon metformin treatment would shed light on possible molecular targets of metformin, especially in conditions like T2DM and obesity.
- Published
- 2021
- Full Text
- View/download PDF
31. Distinctive Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus
- Author
-
Xinyun Gu, Mohammed Al Dubayee, Awad Alshahrani, Afshan Masood, Hicham Benabdelkamel, Mahmoud Zahra, Liang Li, Anas M. Abdel Rahman, and Ahmad Aljada
- Subjects
type 2 diabetes mellitus ,insulin resistance ,obesity ,untargeted metabolomics profiling ,clinical metabolic panel ,chemical isotope labeling liquid chromatography ,Biology (General) ,QH301-705.5 - Abstract
Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated metabolism and can be prevented in pre-diabetic individuals with impaired glucose tolerance. A metabolomic approach emphasizing metabolic pathways is critical to our understanding of this heterogeneous disease. This study aimed to characterize the serum metabolomic fingerprint and multi-metabolite signatures associated with IR and T2DM. Here, we have used untargeted high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs detected, 62% were either identified or matched. A group of 78 metabolites were up-regulated and 111 metabolites were down-regulated comparing obese to lean group while 459 metabolites were up-regulated and 166 metabolites were down-regulated comparing T2DM to obese groups. Several metabolites were identified as IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides. In conclusion, these pilot data have identified IR and T2DM metabolomics panels as potential novel biomarkers of IR and identified metabolites associated with T2DM, with possible diagnostic and therapeutic applications. Further studies to confirm these associations in prospective cohorts are warranted.
- Published
- 2020
- Full Text
- View/download PDF
32. Proteomic Analysis of Endometrial Cancer Tissues from Patients with Type 2 Diabetes Mellitus
- Author
-
Muhammad Mujammami, Mohamed Rafiullah, Assim A. Alfadda, Khalid Akkour, Ibrahim O. Alanazi, Afshan Masood, Mohthash Musambil, Hani Alhalal, Maria Arafah, Anas M. Abdel Rahman, and Hicham Benabdelkamel
- Subjects
uterus ,endometrial cancer ,diabetes ,tissue ,proteomics ,2D-DIGE ,Science - Abstract
Endometrial cancer (EC) is the most common form of gynecological cancer. Type 2 diabetes mellitus is associated with an increased risk of EC. Currently, no proteomic studies have investigated the role of diabetes in endometrial cancers from clinical samples. The present study aims to elucidate the molecular link between diabetes and EC using a proteomic approach. Endometrial tissue samples were obtained from age-matched patients (EC Diabetic and EC Non-Diabetic) during surgery. Untargeted proteomic analysis of the endometrial tissues was carried out using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF). A total of 53 proteins were identified, with a significant difference in abundance (analysis of variance (ANOVA) test, p ≤ 0.05; fold-change ≥ 1.5) between the two groups, among which 30 were upregulated and 23 downregulated in the EC Diabetic group compared to EC Non-Diabetic. The significantly upregulated proteins included peroxiredoxin-1, vinculin, endoplasmin, annexin A5, calreticulin, and serotransferrin. The significantly downregulated proteins were myosin regulatory light polypeptide 9, Retinol dehydrogenase 12, protein WWC3, intraflagellar transport protein 88 homolog, superoxide dismutase [Cu-Zn], and retinal dehydrogenase 1. The network pathway was related to connective tissue disorder, developmental disorder, and hereditary disorder, with the identified proteins centered around dysregulation of ERK1/2 and F Actin signaling pathways. Cancer-associated protein alterations such as upregulation of peroxiredoxin-1, annexin 5, and iNOS, and downregulation of RDH12, retinaldehyde dehydrogenase 1, SOD1, and MYL 9, were found in the EC tissues of the diabetic group. Differential expression of proteins linked to cancer metastasis, such as the upregulation of vinculin and endoplasmin and downregulation of WWC3 and IFT88, was seen in the patients with diabetes. Calreticulin and alpha-enolase, which might have a role in the interplay between diabetes and EC, need further investigation.
- Published
- 2022
- Full Text
- View/download PDF
33. Metabolomics-Microbiome Crosstalk in the Breast Cancer Microenvironment
- Author
-
Mysoon M. Al-Ansari, Reem H. AlMalki, Lina A. Dahabiyeh, and Anas M. Abdel Rahman
- Subjects
metabolomics ,microbiome ,microenvironment ,breast cancer ,Microbiology ,QR1-502 - Abstract
Breast cancer, the most frequent cancer diagnosed among females, is associated with a high mortality rate worldwide. Alterations in the microbiota have been linked with breast cancer development, suggesting the possibility of discovering disease biomarkers. Metabolomics has emerged as an advanced promising analytical approach for profiling metabolic features associated with breast cancer subtypes, disease progression, and response to treatment. The microenvironment compromises non-cancerous cells such as fibroblasts and influences cancer progression with apparent phenotypes. This review discusses the role of metabolomics in studying metabolic dysregulation in breast cancer caused by the effect of the tumor microenvironment on multiple cells such as immune cells, fibroblasts, adipocytes, etc. Breast tumor cells have a unique metabolic profile through the elevation of glycolysis and the tricarboxylic acid cycle metabolism. This metabolic profile is highly sensitive to microbiota activity in the breast tissue microenvironment. Metabolomics shows great potential as a tool for monitoring metabolic dysregulation in tissue and associating the findings with microbiome expression.
- Published
- 2021
- Full Text
- View/download PDF
34. A Distinctive Human Metabolomics Alteration Associated with Osteopenic and Osteoporotic Patients
- Author
-
Shereen M. Aleidi, Eman A. Alnehmi, Mohammed Alshaker, Afshan Masood, Hicham Benabdelkamel, Mysoon M. Al-Ansari, and Anas M. Abdel Rahman
- Subjects
metabolomics ,bone mineral density (BMD) ,osteoporosis ,osteopenia ,mass spectrometry ,Microbiology ,QR1-502 - Abstract
Osteoporosis is a common progressive metabolic bone disease resulting in decreased bone mineral density (BMD) and a subsequent increase in fracture risk. The known bone markers are not sensitive and specific enough to reflect the balance in the bone metabolism. Finding a metabolomics-based biomarker specific for bone desorption or lack of bone formation is crucial for predicting bone health earlier. This study aimed to investigate patients’ metabolomic profiles with low BMD (LBMD), including those with osteopenia (ON) and osteoporosis (OP), compared to healthy controls. An untargeted mass spectrometry (MS)-based metabolomics approach was used to analyze serum samples. Results showed a clear separation between patients with LBMD and control (Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the dynamic of metabolic processes between the study groups. A total of 116 putatively identified metabolites were significantly associated with LBMD. Ninety-four metabolites were dysregulated, with 52 up- and 42 downregulated in patients with LBMD compared to controls. Histidine metabolism, aminoacyl-tRNA biosynthesis, glyoxylate, dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids were the most common metabolic pathways dysregulated in LBMD. Furthermore, 35 metabolites were significantly dysregulated between ON and OP groups, with 11 up- and 24 downregulated in ON compared to OP. Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic acid (CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine, and l-acetylcarnitine), whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic acid (PA) were among the downregulated metabolites in ON compared to OP. This study would add a layer to understanding the possible metabolic alterations associated with ON and OP. Additionally, this identified metabolic panel would help develop a prediction model for bone health and OP progression.
- Published
- 2021
- Full Text
- View/download PDF
35. Metabolomics Profiling of Cystic Renal Disease towards Biomarker Discovery
- Author
-
Dalia Sriwi, Mohamad S. Alabdaljabar, Minnie Jacob, Ahmed H. Mujamammi, Xinyun Gu, Essa M. Sabi, Liang Li, Maged H. Hussein, Majed Dasouki, and Anas M. Abdel Rahman
- Subjects
metabolomics ,mass spectrometry ,cystic renal disease ,dried blood spot ,Biology (General) ,QH301-705.5 - Abstract
Cystic renal disease (CRD) comprises a heterogeneous group of genetic and acquired disorders. The cystic lesions are detected through imaging, either incidentally or after symptoms develop, due to an underlying disease process. In this study, we aim to study the metabolomic profiles of CRD patients for potential disease-specific biomarkers using unlabeled and labeled metabolomics using low and high-resolution mass spectrometry (MS), respectively. Dried-blood spot (DBS) and serum samples, collected from CRD patients and healthy controls, were analyzed using the unlabeled and labeled method. The metabolomics profiles for both sets of samples and groups were collected, and their data were processed using the lab’s standard protocol. The univariate analysis showed (FDR p < 0.05 and fold change 2) was significant to show a group of potential biomarkers for CRD discovery, including uridine diphosphate, cystine-5-diphosphate, and morpholine. Several pathways were involved in CRD patients based on the metabolic profile, including aminoacyl-tRNA biosynthesis, purine and pyrimidine, glutathione, TCA cycle, and some amino acid metabolism (alanine, aspartate and glutamate, arginine and tryptophan), which have the most impact. In conclusion, early CRD detection and treatment is possible using a metabolomics approach that targets alanine, aspartate, and glutamate pathway metabolites.
- Published
- 2021
- Full Text
- View/download PDF
36. Serum-Based Proteomics Profiling in Adult Patients with Cystic Fibrosis
- Author
-
Hicham Benabdelkamel, Hanadi Alamri, Meshail Okla, Afshan Masood, Mai Abdel Jabar, Ibrahim O. Alanazi, Assim A. Alfadda, Imran Nizami, Majed Dasouki, and Anas M. Abdel Rahman
- Subjects
cystic fibrosis ,CFTR ,proteomics ,DIGE-MALDI/TOF ,biomarker ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.
- Published
- 2020
- Full Text
- View/download PDF
37. Targeted Metabolomics Analysis on Obstructive Sleep Apnea Patients after Multilevel Sleep Surgery
- Author
-
Abdulmohsen Alterki, Shibu Joseph, Thangavel Alphonse Thanaraj, Irina Al-Khairi, Preethi Cherian, Arshad Channanath, Devarajan Sriraman, Mahmoud A. K. Ebrahim, Alaaeldin Ibrahim, Ali Tiss, Fahd Al-Mulla, Anas M. Abdel Rahman, Jehad Abubaker, and Mohamed Abu-Farha
- Subjects
obstructive sleep apnea ,metabolomics ,triglycerides ,phosphocholines ,ceramides ,apnea hypopnea index ,Microbiology ,QR1-502 - Abstract
Background: Obstructive sleep apnea (OSA) is caused by partial or complete obstruction of the upper airways. Corrective surgeries aim at removing obstructions in the nasopharynx, oropharynx, and hypopharynx. OSA is associated with an increased risk of various metabolic diseases. Our objective was to evaluate the effect of surgery on the plasma metabolome. Methods: This study included 39 OSA patients who underwent Multilevel Sleep Surgery (MLS). Clinical and anthropometric measures were taken at baseline and five months after surgery. Results: The mean Apnea-Hypopnea Index (AHI) significantly dropped from 22.0 ± 18.5 events/hour to 8.97 ± 9.57 events/hour (p-Value < 0.001). Epworth’s sleepiness Score (ESS) dropped from 12.8 ± 6.23 to 2.95 ± 2.40 (p-Value < 0.001), indicating the success of the surgery in treating OSA. Plasma levels of metabolites, phosphocholines (PC) PC.41.5, PC.42.3, ceremide (Cer) Cer.44.0, and triglyceride (TG) TG.53.6, TG.55.6 and TG.56.8 were decreased (p-Value < 0.05), whereas lysophosphatidylcholines (LPC) 20.0 and PC.39.3 were increased (p-Value < 0.05) after surgery. Conclusion: This study highlights the success of MLS in treating OSA. Treatment of OSA resulted in an improvement of the metabolic status that was characterized by decreased TG, PCs, and Cer metabolites after surgery, indicating that the success of the surgery positively impacted the metabolic status of these patients.
- Published
- 2020
- Full Text
- View/download PDF
38. Anti-VCAM-1 and Anti-IL4Rα Aptamer-Conjugated Super Paramagnetic Iron Oxide Nanoparticles for Enhanced Breast Cancer Diagnosis and Therapy
- Author
-
Raja Chinnappan, Achraf Al Faraj, Anas M. Abdel Rahman, Khalid M. Abu-Salah, Fouzi Mouffouk, and Mohammed Zourob
- Subjects
VCAM1 aptamer ,IL4Rα aptamer ,luciferase assay ,tumor imaging ,MRI ,BLI and SPION ,Organic chemistry ,QD241-441 - Abstract
The surface protein overexpressed on cancer cells can be used as biomarkers for early detection of specific diseases. Anti-VCAM-1 and anti-IL4Rα DNA aptamers specific to VCAM-1 and IL4Rα receptors that are overexpressed in 4T1 tumor-bearing mice could be used as potential biomarker for both diagnostic and therapeutic applications in cancer biology. Cell Viability and luciferase assay of 4T1-Luc2 cancer cells in the presence of anti-VCAM-1 ssDNA or anti-IL4Rα RNA aptamers was assessed by monitoring the changes in the absorbance and the fluorescence of Alamar blue dye. The aptamer-conjugated SPIO magnetic beads, used for the selective targeting to tumor sites, were monitored using noninvasive MRI and Bioluminescence imaging (BLI). Cell viability and luciferase assays showed that both anti-VCAM-1 and anti-IL4Rα aptamers favor the depletion of cancer cells and limit tumor progression. Microscopic analyses confirmed that the target specific aptamers significantly trigger tumor cell apoptosis and limit cancer cell growth in vitro. The intravenous injection of SPIO nanoparticle-conjugated aptamers were further confirmed using noninvasive MRI and Bioluminescence imaging. Anti-VCAM1 and anti-IL4Rα aptamers, specific to VCAM-1 and IL4Rα receptors overexpressed in 4T1-Luc2 tumor-bearing mice, were used as diagnostic and therapeutic tools.
- Published
- 2020
- Full Text
- View/download PDF
39. Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS Analysis
- Author
-
Lina A. Dahabiyeh, Abeer K. Malkawi, Xiaohang Wang, Dilek Colak, Ahmed H. Mujamammi, Essa M. Sabi, Liang Li, Majed Dasouki, and Anas M. Abdel Rahman
- Subjects
dexamethasone ,glucocorticoids ,metabolomics ,mass spectrometry ,rats ,amino acids ,side effects ,Microbiology ,QR1-502 - Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague−Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.
- Published
- 2020
- Full Text
- View/download PDF
40. Metabolomics Based Profiling of Dexamethasone Side Effects in Rats
- Author
-
Abeer K. Malkawi, Karem H. Alzoubi, Minnie Jacob, Goran Matic, Asmaa Ali, Achraf Al Faraj, Falah Almuhanna, Majed Dasouki, and Anas M. Abdel Rahman
- Subjects
pharmacometabolomics ,dexamethasone ,glucocorticoids ,mass spectrometry ,metabolomics ,osteoporosis ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD+). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions.
- Published
- 2018
- Full Text
- View/download PDF
41. Metabolomics Distinguishes DOCK8 Deficiency from Atopic Dermatitis: Towards a Biomarker Discovery
- Author
-
Minnie Jacob, Xinyun Gu, Xian Luo, Hamoud Al-Mousa, Rand Arnaout, Bandar Al-Saud, Andreas L. Lopata, Liang Li, Majed Dasouki, and Anas M. Abdel Rahman
- Subjects
3-hydroxyanthranilic acid ,dansylation ,dedicator of cytokinesis ,hypotaurine ,liquid chromatography-mass spectrometry ,metabolomics ,Microbiology ,QR1-502 - Abstract
Bi-allelic mutations in the dedicator of cytokinesis 8 (DOCK8) are responsible for a rare autosomal recessive primary combined immunodeficiency syndrome, characterized by atopic dermatitis, elevated serum Immunoglobulin E (IgE) levels, recurrent severe cutaneous viral infections, autoimmunity, and predisposition to malignancy. The molecular link between DOCK8 deficiency and atopic skin inflammation remains unknown. Severe atopic dermatitis (AD) and DOCK8 deficiency share some clinical symptoms, including eczema, eosinophilia, and increased serum IgE levels. Increased serum IgE levels are characteristic of, but not specific to allergic diseases. Herein, we aimed to study the metabolomic profiles of DOCK8-deficient and AD patients for potential disease-specific biomarkers using chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). Serum samples were collected from DOCK8-deficient (n = 10) and AD (n = 9) patients. Metabolomics profiling using CIL LC-MS was performed on patient samples and compared to unrelated healthy controls (n = 33). Seven metabolites were positively identified, distinguishing DOCK8-deficient from AD patients. Aspartic acid and 3-hydroxyanthranillic acid (3HAA, a tryptophan degradation pathway intermediate) were up-regulated in DOCK8 deficiency, whereas hypotaurine, leucyl-phenylalanine, glycyl-phenylalanine, and guanosine were down-regulated. Hypotaurine, 3-hydroxyanthranillic acid, and glycyl-phenyalanine were identified as potential biomarkers specific to DOCK8 deficiency. Aspartate availability has been recently implicated as a limiting metabolite for tumour growth and 3HAA; furthermore, other tryptophan metabolism pathway-related molecules have been considered as potential novel targets for cancer therapy. Taken together, perturbations in tryptophan degradation and increased availability of aspartate suggest a link of DOCK8 deficiency to oncogenesis. Additionally, perturbations in taurine and dipeptides metabolism suggest altered antixidation and cell signaling states in DOCK8 deficiency. Further studies examining the mechanisms underlying these observations are necessary.
- Published
- 2019
- Full Text
- View/download PDF
42. Proteomic Analysis of Morphologically Changed Tissues after Prolonged Dexamethasone Treatment
- Author
-
Abeer K. Malkawi, Afshan Masood, Zakia Shinwari, Minnie Jacob, Hicham Benabdelkamel, Goran Matic, Falah Almuhanna, Majed Dasouki, Ayodele A. Alaiya, and Anas M. Abdel Rahman
- Subjects
dexamethasone ,label-free proteomics ,LC-MS/M ,rat tissues ,glucocorticoid side effects ,proteomic expression ,network pathway ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Prolonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague−Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins (n = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats. Functional network analysis using ingenuity pathway analysis (IPA revealed significant differences in regulation of metabolic pathways within the morphologically changed organs that related to: (i) brain—cell morphology, nervous system development, and function and neurological disease; (ii) heart—cellular development, cellular function and maintenance, connective tissue development and function; (iii) skeletal muscle—nucleic acid metabolism, and small molecule biochemical pathways; (iv) liver—lipid metabolism, small molecular biochemistry, and nucleic acid metabolism; and (v) kidney—drug metabolism, organism injury and abnormalities, and renal damage. Our study provides a comprehensive description of the organ-specific proteomic profilesand differentially altered biochemical pathways, after prolonged Dex treatement to understand the molecular basis for development of side effects.
- Published
- 2019
- Full Text
- View/download PDF
43. Molecular and Metabolomic Investigation of Celecoxib Antiproliferative Activity in Mono-and Combination Therapy against Breast Cancer Cell Models
- Author
-
Afnan K. AlHiary, Lina A. Dahabiyeh, Anas M. Abdel Rahman, James W. Dennis, Judy Pawling, Dana D. Shalabi, Bushra M. Akileh, and Sanaa K. Bardaweel
- Subjects
Cancer Research ,Apoptosis ,Breast Neoplasms ,chemistry.chemical_compound ,Breast cancer ,medicine ,Humans ,Metabolomics ,Raloxifene ,MTT assay ,Propidium iodide ,skin and connective tissue diseases ,Cell Proliferation ,Pharmacology ,Cyclooxygenase 2 Inhibitors ,Chemistry ,Anti-Inflammatory Agents, Non-Steroidal ,medicine.disease ,Celecoxib ,Cyclooxygenase 2 ,Selective estrogen receptor modulator ,Raloxifene Hydrochloride ,Cancer cell ,Cancer research ,Molecular Medicine ,Female ,medicine.drug - Abstract
Background: Chronic inflammation plays a crucial role in the initiation, promotion, and invasion of tumors, and thus the antiproliferative effects of numerous anti-inflammatory drugs have been frequently reported in the literature. Upregulation of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) has been linked to various human cancers, including breast cancer. Objective: This research aims to investigate the antiproliferative activity of different Non-steroidal anti-inflammatory drugs (NSAIDs), including COX-2 selective and non-selective agents, against various breast cancer cell lines and to elucidate possible molecular pathways involved in their activity. Methods: The antiproliferative and combined effects of NSAIDs with raloxifene were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. A mass spectrometry-based targeted metabolomics approach was used to profile the metabolomic changes induced in the T47d cells upon drug treatment. Results: Our results have demonstrated that celecoxib, a potent and selective COX-2 inhibitor, resulted in significant antiproliferative activity against all examined breast cancer cell lines with IC50 values of 95.44, 49.50. and 97.70 μM against MDA-MB-231, T47d, and MCF-7, respectively. Additionally, celecoxib exhibited a synergistic effect against T47d cells combined with raloxifene, a selective estrogen receptor modulator. Interestingly, celecoxib treatment increased cell apoptosis and resulted in substantial inhibition of cancer cell migration. In addition, the metabolomic analysis suggests that celecoxib may have affected metabolites (n = 43) that are involved in several pathways, including the tricarboxylic acid cycle, amino acids metabolism pathways, and energy production pathways in cancer cells. Conclusion: Celecoxib may possess potential therapeutic utility for breast cancer treatment as monotherapy or in combination therapy. The reported metabolic changes taking place upon celecoxib treatment may shed light on possible molecular targets mediating the antiproliferative activity of celecoxib in an independent manner of its COX-2 inhibition.
- Published
- 2022
44. Lipidome Alterations Induced by Cystic Fibrosis, CFTR Mutation, and Lung Function
- Author
-
Adriana Zardini Buzatto, Mai Abdel Jabar, Liang Li, Anas M. Abdel Rahman, Imran Nizami, and Majed Dasouki
- Subjects
0301 basic medicine ,Pathology ,medicine.medical_specialty ,Cystic Fibrosis ,Cystic Fibrosis Transmembrane Conductance Regulator ,medicine.disease_cause ,Biochemistry ,Cystic fibrosis ,03 medical and health sciences ,Blood serum ,Lipidomics ,medicine ,Humans ,Lung ,Mutation ,030102 biochemistry & molecular biology ,business.industry ,Lipid metabolism ,General Chemistry ,Lipidome ,medicine.disease ,3. Good health ,030104 developmental biology ,Biomarker (medicine) ,business ,Dyslipidemia - Abstract
Cystic fibrosis is a genetic pathology characterized by abnormal accumulation of mucus in the respiratory, gastrointestinal, and reproductive tracts, caused by mutations in the CFTR gene. Although the classical presentation of the condition is well known, there is still a need for a better characterization of metabolic alterations related to cystic fibrosis and different genotypic mutations. We employed untargeted, comprehensive lipidomics of blood serum samples to investigate alterations in the lipid metabolism related to the pathology, mutation classes, and lung function decline. Six unique biomarker candidates were able to independently differentiate diseased individuals from healthy controls with excellent performance. Cystic fibrosis patients showed dyslipidemia for most lipid subclasses, with significantly elevated odd-chain and polyunsaturated fatty acyl lipids. Phosphatidic acids and diacylglycerols were particularly affected by different genotypic mutation classes. We selected a biomarker panel composed of four lipids, including two ceramides, one sphingomyelin, and one fatty acid, which correctly classified all validation samples from classes III and IV. A biomarker panel of five oxidized lipids was further selected to differentiate patients with reduced lung function, measured as predicted FEV1%. Our results indicate that cystic fibrosis is deeply related to lipid metabolism and provide new clues for the investigation of the disease mechanisms and therapeutic targets.
- Published
- 2020
45. CFTR protein quantification as a cystic fibrosis diagnostic biomarker in dried blood spots using multiple reaction monitoring tandem mass spectrometry
- Author
-
Khalid M. Sumaily, Refat Nimer, Maha Alzahrani, Mai Abdel Jabar, Ahmad Alodib, Essa M. Sabi, Imran Nizami, and Anas M. Abdel Rahman
- Subjects
Cystic Fibrosis ,Tandem Mass Spectrometry ,Clinical Biochemistry ,Drug Discovery ,Pharmaceutical Science ,Cystic Fibrosis Transmembrane Conductance Regulator ,Humans ,Spectroscopy ,Biomarkers ,Analytical Chemistry ,Chromatography, Liquid - Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel found on the apical surface of epithelial cells in the airway and gastrointestinal tract. A mutation in the CFTR protein is responsible for developing cystic fibrosis (CF) disease. Therefore, circulating CFTR protein could be a promising biomarker of CF disease. Multiple methodological challenges are associated with CF's available diagnostic and screening methods, such as low specificity and potential false discovery rate, mainly for ethnic groups whose CFTR mutations are not covered in the mutation panels. Herein, we have developed an absolute quantification (AQUA) method based on two CFTR signature peptides (SPs). A liquid chromatography-tandem spectrometry (LC-MS/MS) method in multiple reaction monitoring (MRM) mode (MRM transitions 1168.90 85.929 and 707.19 85.93 of SP1 and SP2, respectively) enabled the accurate quantification of CFTR protein in a dried blood spot (DBS). The method was validated successfully based on international guidelines in terms of signal linearity, precision (within-run CV 3.37-8.54%; between-run CV 5.15-11.06% for the selected SPs), and accuracy (within-run 93.4-105.59%; between-run 97.45-103.28% for the selected SPs). The level of soluble CFTR protein was evaluated as a potential biomarker for CF using patients (n = 39) and healthy controls (n = 30), were found to be in CF patients lower than controls. For instant, the level of signature peptide 1 (SP1) was 2.09 ± 0.55 nM, 68.77 ± 1.40 nM in CF patients compared to Ctrl, respectively; p 0.0001. This study is the first to report CFTR levels in DBS using signature peptides by LC-MS/MS as a diagnostic marker for CF. The receiver operating characteristic (ROC) for CFTR SP1 and SP2 showed a significant area under the curves (AUC) 0.7714 (99% CI, p 0.0001), and 0.8234 (99% CI, p 0.0001), respectively. The presented MRM method provides a highly specific and sensitive approach to CFTR quantification in a DBS and could be applied in CF screening.
- Published
- 2021
46. A Distinctive Human Metabolomics Alteration Associated with Osteopenic and Osteoporotic Patients
- Author
-
Afshan Masood, Anas M. Abdel Rahman, Mohammed Alshaker, Mysoon M. Al-Ansari, Hicham Benabdelkamel, Shereen M. Aleidi, and Eman A Alnehmi
- Subjects
medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,Osteoporosis ,Biochemistry ,Microbiology ,Article ,Bone remodeling ,Metabolic bone disease ,Metabolomics ,Internal medicine ,medicine ,Carnitine ,Molecular Biology ,mass spectrometry ,bone mineral density (BMD) ,business.industry ,medicine.disease ,metabolomics ,osteoporosis ,QR1-502 ,Osteopenia ,Metabolic pathway ,Endocrinology ,osteopenia ,Biomarker (medicine) ,business ,medicine.drug - Abstract
Osteoporosis is a common progressive metabolic bone disease resulting in decreased bone mineral density (BMD) and a subsequent increase in fracture risk. The known bone markers are not sensitive and specific enough to reflect the balance in the bone metabolism. Finding a metabolomics-based biomarker specific for bone desorption or lack of bone formation is crucial for predicting bone health earlier. This study aimed to investigate patients’ metabolomic profiles with low BMD (LBMD), including those with osteopenia (ON) and osteoporosis (OP), compared to healthy controls. An untargeted mass spectrometry (MS)-based metabolomics approach was used to analyze serum samples. Results showed a clear separation between patients with LBMD and control (Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the dynamic of metabolic processes between the study groups. A total of 116 putatively identified metabolites were significantly associated with LBMD. Ninety-four metabolites were dysregulated, with 52 up- and 42 downregulated in patients with LBMD compared to controls. Histidine metabolism, aminoacyl-tRNA biosynthesis, glyoxylate, dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids were the most common metabolic pathways dysregulated in LBMD. Furthermore, 35 metabolites were significantly dysregulated between ON and OP groups, with 11 up- and 24 downregulated in ON compared to OP. Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic acid (CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine, and l-acetylcarnitine), whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic acid (PA) were among the downregulated metabolites in ON compared to OP. This study would add a layer to understanding the possible metabolic alterations associated with ON and OP. Additionally, this identified metabolic panel would help develop a prediction model for bone health and OP progression.
- Published
- 2021
47. Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion
- Author
-
Yohan Kim, Hon S. Leong, Karina Pacholczyk, Bharat H. Joshi, Leonard J. Foster, Wynn Tran, Jay Shankar, Ivan R. Nabi, Fanrui Meng, Anas M. Abdel Rahman, Judy Pawling, and James W. Dennis
- Subjects
0301 basic medicine ,caveolin-1 ,tumor suppressor ,Chemistry ,Cell growth ,Warburg effect ,Cell biology ,Focal adhesion ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,Oncology ,Tumor progression ,030220 oncology & carcinogenesis ,Invadopodia ,Caveolin 1 ,Phosphorylation ,TP53 ,tumor cell metabolism ,Research Paper ,invadopodia ,Proto-oncogene tyrosine-protein kinase Src - Abstract
Caveolin-1 is a transmembrane protein with both tumor promoter and suppressor functions that remain poorly understood. Cav1 phosphorylation by Src kinase on tyrosine 14 is closely associated with focal adhesion dynamics and tumor cell migration, however the role of pCav1 in vivo in tumor progression remains poorly characterized. Herein, we expressed phosphomimetic Y14D, wild type, and non-phosphorylatable Y14F forms of Cav1 in MDA-MB-435 cancer cells. Expression of Cav1Y14D reduced cell proliferation and induced the TP53 tumor suppressor. Ectopic expression in MDA-MB-435 cells of Y14 phosphorylatable Cav1 was required for induction of TP53 in response to oxidative stress. Cav1Y14D promotes an apparent reversal of the Warburg effect and markedly inhibited tumor growth in vivo. However, Cav1 induced pseudopodial recruitment of glycolytic enzymes, and time-lapse intravital imaging showed increased invadopodia protrusion and extravasation into blood vessels for Cav1WT and Y14D but not for Y14F. Our results suggest that Cav1 Y14 phosphorylation levels play a role in the conflicting demands on metabolic resources associated with cancer cell proliferation versus motility.
- Published
- 2019
48. Tissue Lipidomic Alterations Induced by Prolonged Dexamethasone Treatment
- Author
-
Anas M. Abdel Rahman, Essa M Sabi, Ahmed H. Mujamammi, Liang Li, Abeer Malkawi, and Adriana Zardini Buzatto
- Subjects
0301 basic medicine ,Inflammation ,Glycerophospholipids ,Pharmacology ,Biochemistry ,Dexamethasone ,03 medical and health sciences ,chemistry.chemical_compound ,Lipidomics ,Medicine ,Animals ,Adverse effect ,Myopathy ,030102 biochemistry & molecular biology ,business.industry ,Fatty Acids ,Skeletal muscle ,General Chemistry ,Phosphatidic acid ,Lipids ,Rats ,030104 developmental biology ,medicine.anatomical_structure ,chemistry ,medicine.symptom ,business ,Glucocorticoid ,medicine.drug - Abstract
Dexamethasone is a synthetic glucocorticoid medication vastly used to treat abnormal immune responses and inflammation. Although the medication is well-established in the medical community, the prolonged treatment with high dosages of dexamethasone may lead to severe adverse effects through mechanisms that are not yet well-known. Lipids are a large class of hydrophobic molecules involved in energy storage, signaling, modulation of gene expression, and membranes. Hence, untargeted lipidomics may help unravel the biochemical alterations following prolonged treatment with high dosages of dexamethasone. We performed comprehensive lipidomic analyses of brain, heart, kidney, liver, and muscle samples obtained from rats that were treated with intramuscular injections of dexamethasone for 14 weeks compared to healthy controls. The employed methodology and statistical analysis showed that phosphatidic acids, glycerophospholipids, plasmalogens, and fatty acids are deeply affected by prolonged use of the medication. Brain tissue was only mildly affected, but skeletal muscle showed a strong accumulation of lipids that may be correlated with alterations in the energy metabolism, myopathy, and oxidative processes. This work provides new insights into the mechanisms of action and adverse effects for one of the most commonly prescribed class of drugs in the world.
- Published
- 2021
49. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function
- Author
-
Hicham Benabdelkamel, Anas M. Abdel Rahman, Liang Li, Imran Nizami, Afshan Masood, Majed Dasouki, Minnie Jacob, Mai Abdel Jabar, and Xinyun Gu
- Subjects
medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,01 natural sciences ,Biochemistry ,Cystic fibrosis ,03 medical and health sciences ,chemistry.chemical_compound ,Metabolomics ,Internal medicine ,medicine ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,biology ,010401 analytical chemistry ,Glutathione ,Glutamic acid ,medicine.disease ,Cystathionine beta synthase ,Cystic fibrosis transmembrane conductance regulator ,0104 chemical sciences ,Amino acid ,Glutamine ,Endocrinology ,chemistry ,biology.protein - Abstract
Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
- Published
- 2021
50. Clinical Metabolomics Applications in Genetic Diseases
- Author
-
Anas M. Abdel Rahman and Anas M. Abdel Rahman
- Subjects
- Medical genetics, Metabolism—Disorders, Biochemistry, Metabolism, Cell biology, Medicine, Bioinformatics
- Abstract
This book helps readers discover the forefront of personalized medicine on clinical metabolomics and its applications in genetic diseases. This comprehensive guide offers a functional relationship map between cell components and genetic variations in various diseases, providing insights that can be applied to personalized medicine. The book covers the latest developments in metabolomics for health, with practical guidance for clinical experts looking to advance their laboratory techniques and career. The metabolomics profile is a powerful tool that has revolutionized our understanding of the relationship between genetics, clinical readouts, and disease outcomes. By integrating metabolomics with genomics and clinical phenotypes, the authors have developed diagnostic and prediction models that have vastly improved patient outcomes and deepened the understanding of disease mechanisms. This model has been successfully applied in various conditions, including inborn errors of metabolism, primary immunodeficiency, and endocrine disorders. However, integrating metabolomics with other omics datasets and clinical phenotypes requires careful study design, analytical tools, and data analysis and interpretation. This groundbreaking new book provides essential guidance for researchers, students, and professionals looking to leverage metabolomics in their own work, including biochemical and clinical geneticists, pharmacogenomics and pharmacometabolomics experts, pharmaceutics and diagnostic researchers, medical scientists, clinical dietitians, metabolic engineers, clinical chemists, and personalized medicine specialists.
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.