Tiina Tulonen, Annastiina Rytkönen, Ananda Tiwari, Asko Vepsäläinen, Sari Uusheimo, Anna-Maria Hokajärvi, Tarja Pitkänen, Food Hygiene and Environmental Health, Doctoral Programme in Food Chain and Health, Zoonotic Antimicrobial Resistance, Lammi Biological Station, University of Helsinki, Biological stations, Helsinki One Health (HOH), and Waterborne pathogens
Funding Information: We thank Tiina Heiskanen, Tarja Rahkonen, and Tarja Yli-Tuomi for their technical assistance and local health and environment authorities, and communal water supply personnel Jukka Meriluoto, Salla Leppänen, Anu Väänänen, Päivi Rissanen, Katja Ylönen, Hanna Jääskeläinen, and especially Ville Soininen and Inkeri Eronen, who received funding for the work from the North Ostrobothnia Centre for Economic Development, Transport, and the Environment (grant number POPELY/2687/2017), for organizing sample collection. Funding. This research was supported in part by the cities of Kalajoki, Tampere, Kuopio, and the municipal wastewater treatment plants Hämeenlinnan Seudun Vesi Ltd., Nokian Vesi Ltd., and Oulun Vesi Ltd., who provided samples for the study. Further, the work was partially funded by the Regional Council of Häme, grant number 518 HL/106/04.01.01/2018. We acknowledge all of the project partners and collaborators, especially the personnel of HAMK University of Applied Sciences, Hämeenlinnan Seudun Vesi Ltd., the Lammi Biological Station, and Ilkka Hirvonen of Led Future Ltd. Funding Information: This research was supported in part by the cities of Kalajoki, Tampere, Kuopio, and the municipal wastewater treatment plants Hämeenlinnan Seudun Vesi Ltd., Nokian Vesi Ltd., and Oulun Vesi Ltd., who provided samples for the study. Further, the work was partially funded by the Regional Council of Häme, grant number 518 HL/106/04.01.01/2018. We acknowledge all of the project partners and collaborators, especially the personnel of HAMK University of Applied Sciences, Hämeenlinnan Seudun Vesi Ltd., the Lammi Biological Station, and Ilkka Hirvonen of Led Future Ltd. Publisher Copyright: © Copyright © 2021 Rytkönen, Tiwari, Hokajärvi, Uusheimo, Vepsäläinen, Tulonen and Pitkänen. For microbial source tracking (MST), the 16S ribosomal RNA genes (rDNA) of host-specific bacteria and mitochondrial DNA (mtDNA) of animal species, known to cause fecal contamination of water, have been commonly used as molecular targets. However, low levels of contamination might remain undetected by using these DNA-based qPCR assays. The high copy numbers of ribosomal RNA (rRNA) could offer a solution for such applications of MST. This study compared the performance of eight MST assays: GenBac3 (general Bacteroidales), HF183 (human), BacCan (dog), Rum-2-Bac (ruminant), Pig-2-Bac (swine), Gull4 (gull), GFD, and Av4143 (birds) between rRNA-based and rDNA-based approaches. Three mtDNA-based approaches were tested: DogND5, SheepCytB, and HorseCytB. A total of 151 animal fecal samples and eight municipal sewage samples from four regions of Finland were collected for the marker evaluation. The usability of these markers was tested by using a total of 95 surface water samples with an unknown pollution load. Overall, the performance (specificity, sensitivity, and accuracy) of mtDNA-based assays was excellent (95-100%), but these markers were very seldom detected from the tested surface water samples. The rRNA template increased the sensitivity of assays in comparison to the rDNA template. All rRNA-based assays (except Av4143) had more than 80% sensitivity. In contrast, only half (HF183, Rum-2-Bac, Pig-2-Bac, and Gull4) of rDNA-based assays reached this value. For markers targeted to bird feces, the use of the rRNA-based assay increased or at least did not change the performance. Regarding specificity, all the assays had >95% specificity with a DNA template, except the BacCan assay (71%). While using the RNA template for the assays, HF183 and BacCan exhibited only a low level of specificity (54 and 55%, respectively). Further, the HF183 assay amplified from multiple non-targeted animal fecal samples with the RNA template and the marker showed cross-amplification with the DNA template as well. This study recommends using the rRNA-based approach for MST assays targeting bird fecal contamination. In the case of mammal-specific MST assays, the use of the rRNA template increases the sensitivity but may reduce the specificity and accuracy of the assay. The finding of increased sensitivity calls for a further need to develop better rRNA-based approaches to reach the required assay performance. peerReviewed