18 results on '"Anaëlle Legros"'
Search Results
2. Disorder-enhanced effective masses and deviations from Matthiessen's rule in PdCoO$_2$ thin films
- Author
-
David Barbalas, Anaëlle Legros, Gaurab Rimal, Seongshik Oh, and N. P. Armitage
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,FOS: Physical sciences - Abstract
The observation of hydrodynamic transport in the metallic delafossite PdCoO$_2$ has increased interest in this family of highly conductive oxides, but experimental studies so far have mostly been confined to bulk crystals. In this work, the development of high-quality thin films of PdCoO$_2$ has enabled a thorough study of the conductivity as a function of film thickness using both dc transport and time-domain THz spectroscopy. With increasing film thickness from 12 nm to 102 nm, the residual resistivity decreases and we observe a large deviation from Matthiessen's rule (DMR) in the temperature dependence of the resistivity. We find that the complex THz conductivity is well fit by a single Drude term. We fit the data to extract the spectral weight and scattering rate simultaneously. The temperature dependence of the Drude scattering rate is found to be nearly independent of the residual resistivity and cannot be the primary mechanism for the observed DMR. Rather, we observe large changes in the spectral weight as a function of disorder, changing by a factor of 1.5 from the most disordered to least disordered films. We believe this corresponds to a mass enhancement of $\geq 2$ times the value of the bulk effective mass which increases with residual disorder. This suggests that the mechanism behind the DMR observed in dc resistivity is primarily driven by changes in the electron mass. We discuss the possible origins of this behavior including the possibility of disorder-enhanced electron-phonon scattering, which can be systematically tuned by film thickness., 10 pages, 8 figures
- Published
- 2022
3. Observation of 4- and 6-Magnon Bound States in the Spin-Anisotropic Frustrated Antiferromagnet FeI2
- Author
-
Anaëlle Legros, Shang-Shun Zhang, Xiaojian Bai, Hao Zhang, Zhiling Dun, W. Adam Phelan, Cristian D. Batista, Martin Mourigal, and N. P. Armitage
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,FOS: Physical sciences ,General Physics and Astronomy ,Condensed Matter::Strongly Correlated Electrons - Abstract
Spin-waves e.g. magnons are the conventional elementary excitations of ordered magnets. However, other possibilities exist. For instance, magnon bound-states can arise due to attractive magnon-magnon interactions and drastically impact the static and dynamic properties of materials. Here, we demonstrate a zoo of distinct multi-magnon quasiparticles in the frustrated spin-1 triangular antiferromagnet FeI$_2$ using time-domain terahertz spectroscopy. The energy-magnetic field excitation spectrum contains signatures of one-, two-, four- and six-magnon bound-states, which we analyze using an exact diagonalization approach for a dilute gas of interacting magnons. The two-magnon single-ion bound states occur due to strong anisotropy and the preponderance of even higher order excitations arises from the tendency of the single-ion bound states to themselves form bound states due to their very flat dispersion. This menagerie of tunable interacting quasiparticles provides a unique platform in a condensed matter setting that is reminiscent of the few-body quantum phenomena central to cold-atom, nuclear, and particle physics experiments.
- Published
- 2021
- Full Text
- View/download PDF
4. Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2Sr2−xLaxCuO6+δ
- Author
-
G. Grissonnanche, Anaëlle Legros, S. Benhabib, S. Badoux, M. Lizaire, Guo-Qing Zheng, Steffen Wiedmann, David Leboeuf, S. Licciardello, Louis Taillefer, Francis Laliberte, Shimpei Ono, Marie-Eve Boulanger, H. Raffy, Cyril Proust, A. Ataei, Nicolas Doiron-Leyraud, Adrien Gourgout, and Shinji Kawasaki
- Subjects
Superconductivity ,Physics ,Condensed matter physics ,Knight shift ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Critical point (thermodynamics) ,Hall effect ,Condensed Matter::Superconductivity ,Seebeck coefficient ,0103 physical sciences ,Density of states ,Condensed Matter::Strongly Correlated Electrons ,Cuprate ,010306 general physics ,0210 nano-technology ,Pseudogap - Abstract
Five transport coefficients of the cuprate superconductor ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2\ensuremath{-}x}{\mathrm{La}}_{x}{\mathrm{CuO}}_{6+\ensuremath{\delta}}$ were measured in the normal state down to low temperature, reached by applying a magnetic field (up to 66 T) large enough to suppress superconductivity. The electrical resistivity, Hall coefficient, thermal conductivity, Seebeck coefficient, and thermal Hall conductivity were measured in two overdoped single crystals, with La concentration $x=0.2$ (${T}_{\mathrm{c}} =18$ K) and $x=0.0$ (${T}_{\mathrm{c}} =10$ K). The samples have dopings $p$ very close to the critical doping ${p}^{★}$ where the pseudogap phase ends. The resistivity displays a linear dependence on temperature whose slope is consistent with Planckian dissipation. The Hall number ${n}_{\mathrm{H}}$ decreases with reduced $p$, consistent with a drop in carrier density from $n=1+p$ above ${p}^{★}$ to $n=p$ below ${p}^{★}$. This drop in ${n}_{\mathrm{H}}$ is concomitant with a sharp drop in the density of states inferred from prior NMR Knight shift measurements. The thermal conductivity satisfies the Wiedemann-Franz law, showing that the pseudogap phase at $T=0$ is a metal whose fermionic excitations carry heat and charge as do conventional electrons. The Seebeck coefficient diverges logarithmically at low temperature, a signature of quantum criticality. The thermal Hall conductivity becomes negative at low temperature, showing that phonons are chiral in the pseudogap phase. Given the observation of these same properties in other, very different cuprates, our study provides strong evidence for the universality of these five signatures of the pseudogap phase and its critical point.
- Published
- 2021
- Full Text
- View/download PDF
5. Normal state specific heat in the cuprate superconductors La2−xSrxCuO4 and Bi2+ySr2−x−yLaxCuO6+δ near the critical point of the pseudogap phase
- Author
-
K. Kindo, H. Takagi, Anaëlle Legros, Christophe Marcenat, Johan Chang, M. Lizaire, A. Demuer, Shimpei Ono, Naoki Momono, Migaku Oda, Adrien Gourgout, Louis Taillefer, Shusaku Imajo, T. Kurosawa, Guo-Qing Zheng, Thierry Klein, D. LeBoeuf, Yoshimitsu Kohama, G. Seyfarth, and Clément Girod
- Subjects
Physics ,Superconductivity ,Specific heat ,Logarithmic growth ,02 engineering and technology ,Normal state ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystallography ,Critical point (thermodynamics) ,Condensed Matter::Superconductivity ,Phase (matter) ,0103 physical sciences ,Cuprate ,010306 general physics ,0210 nano-technology ,Pseudogap - Abstract
The specific heat $C$ of the cuprate superconductors ${\mathrm{La}}_{2\ensuremath{-}x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ and ${\mathrm{Bi}}_{2+y}{\mathrm{Sr}}_{2\ensuremath{-}x\ensuremath{-}y}{\mathrm{La}}_{x}{\mathrm{CuO}}_{6+\ensuremath{\delta}}$ was measured at low temperatures (down to 0.5 K) for dopings $p$ close to ${p}^{★}$, the critical doping for the onset of the pseudogap phase. A magnetic field up to 35 T was applied to suppress superconductivity, giving direct access to the normal state at low temperatures, and enabling a determination of ${C}_{\mathrm{e}}$, the electronic contribution to the normal-state specific heat at $T\ensuremath{\rightarrow}0$. In ${\mathrm{La}}_{2\ensuremath{-}x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ at $x=p=0.22$, 0.24 and 0.25, ${C}_{\mathrm{e}}/T=15\phantom{\rule{0.28em}{0ex}}\mathrm{to}\phantom{\rule{0.28em}{0ex}}16\phantom{\rule{0.28em}{0ex}}\mathrm{mJ}\phantom{\rule{0.16em}{0ex}}{\mathrm{mol}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}2}$ at $T=2\phantom{\rule{0.28em}{0ex}}\mathrm{K}$, values that are twice as large as those measured at higher doping ($pg0.3$) and lower doping ($pl0.15$). This confirms the presence of a broad peak in the doping dependence of ${C}_{\mathrm{e}}$ at ${p}^{★}\ensuremath{\simeq}0.19$ as previously reported for samples in which superconductivity was destroyed by Zn impurities. Moreover, at those three dopings, we find a logarithmic growth as $T\ensuremath{\rightarrow}0$ such that ${C}_{\mathrm{e}}/T\ensuremath{\sim}B\phantom{\rule{0.16em}{0ex}}ln({T}_{0}/T)$. The peak versus $p$ and the logarithmic dependence versus $T$ are the two typical thermodynamic signatures of quantum criticality. In the very different cuprate ${\mathrm{Bi}}_{2+y}{\mathrm{Sr}}_{2\ensuremath{-}x\ensuremath{-}y}{\mathrm{La}}_{x}{\mathrm{CuO}}_{6+\ensuremath{\delta}}$, we again find that ${C}_{\mathrm{e}}/T\ensuremath{\sim}B\phantom{\rule{0.16em}{0ex}}ln({T}_{0}/T)$ at $p\ensuremath{\simeq}{p}^{★}$, strong evidence that this $ln(1/T)$ dependence of the electronic specific heat---first discovered in the cuprates ${\mathrm{La}}_{1.8\ensuremath{-}x}{\mathrm{Eu}}_{0.2}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ and ${\mathrm{La}}_{1.6\ensuremath{-}x}{\mathrm{Nd}}_{0.4}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$---is a universal property of the pseudogap critical point.
- Published
- 2021
- Full Text
- View/download PDF
6. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors
- Author
-
Gael Grissonnanche, Louis Taillefer, Etienne Lefrancois, Tomohiro Takayama, Sven Badoux, M. Lizaire, Nicolas Doiron-Leyraud, Jianshi Zhou, Sunseng Pyon, Anaëlle Legros, Francis Laliberte, Adrien Gourgout, Hidenori Takagi, Victor Zatko, and Shimpei Ono
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Superconductivity ,Multidisciplinary ,Condensed matter physics ,Phonon ,Scattering ,Mott insulator ,Magnon ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Superconductivity ,0103 physical sciences ,Antiferromagnetism ,Condensed Matter::Strongly Correlated Electrons ,Cuprate ,010306 general physics ,0210 nano-technology ,Pseudogap - Abstract
The nature of the pseudogap phase of cuprates remains a major puzzle. Although there are indications that this phase breaks various symmetries, there is no consensus on its fundamental nature. Although Fermi-surface, transport and thermodynamic signatures of the pseudogap phase are reminiscent of a transition into a phase with antiferromagnetic order, there is no evidence for an associated long-range magnetic order. Here we report measurements of the thermal Hall conductivity $\kappa_{\rm xy}$ in the normal state of four different cuprates (Nd-LSCO, Eu-LSCO, LSCO, and Bi2201) and show that a large negative $\kappa_{\rm xy}$ signal is a property of the pseudogap phase, appearing with the onset of that phase at the critical doping $p^*$. Since it is not due to charge carriers -- as it persists when the material becomes an insulator, at low doping -- or magnons -- as it exists in the absence of magnetic order -- or phonons -- since skew scattering is very weak, we attribute this $\kappa_{\rm xy}$ signal to exotic neutral excitations, presumably with spin chirality. The thermal Hall conductivity in the pseudogap phase of cuprates is reminiscent of that found in insulators with spin-liquid states. In the Mott insulator LCO, it attains the highest known magnitude of any insulator.
- Published
- 2019
- Full Text
- View/download PDF
7. Thermopower across the phase diagram of the cuprate La1.6−xNd0.4SrxCuO4 : Signatures of the pseudogap and charge density wave phases
- Author
-
Bruce D. Gaulin, Qianli Ma, Anaëlle Legros, S. Badoux, Clément Collignon, J.-S. Zhou, A. Ataei, Steffen Wiedmann, Louis Taillefer, M. Lizaire, Nicolas Doiron-Leyraud, S. Licciardello, Jiaqiang Yan, and Adrien Gourgout
- Subjects
Superconductivity ,Physics ,Condensed matter physics ,Order (ring theory) ,Charge (physics) ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,0103 physical sciences ,Cuprate ,010306 general physics ,0210 nano-technology ,Pseudogap ,Charge density wave ,Phase diagram - Abstract
Cuprate high-temperature superconductors universally exhibit a phase of charge order and a mysterious pseudogap phase. Using thermopower measurements, the authors explore here how the cuprate La${}_{1.6\ensuremath{-}x}$Nd${}_{0.4}$Sr${}_{x}$CuO${}_{4}$ (Nd-LSCO) evolves across these phases. They find that the thermopower displays a large increase below the pseudogap critical doping point ${p}^{*}$ and becomes negative in the charge order phase below that critical doping point ${p}_{\text{CDW}}$. This evolution hints at profound changes in the electronic structure at ${p}^{*}$ and ${p}_{\text{CDW}}$. They observe that these two critical dopings are well separated, implying that the two phases are clearly distinct.
- Published
- 2021
- Full Text
- View/download PDF
8. Signatures of possible surface states in TaAs
- Author
-
Francis Laliberte, Wojciech Tabis, Sinéad M. Griffin, Sanyum Channa, Marie-Eve Boulanger, Nityan Nair, Cyril Proust, James Analytis, Anaëlle Legros, Jeffrey B. Neaton, and Louis Taillefer
- Subjects
Physics ,Condensed matter physics ,Photoemission spectroscopy ,Quantum oscillations ,Fermi surface ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Effective mass (solid-state physics) ,0103 physical sciences ,Quasiparticle ,Condensed Matter::Strongly Correlated Electrons ,Density functional theory ,010306 general physics ,0210 nano-technology ,Fermi Gamma-ray Space Telescope ,Surface states - Abstract
Author(s): Nair, NL; Boulanger, ME; Laliberte, F; Griffin, S; Channa, S; Legros, A; Tabis, W; Proust, C; Neaton, J; Taillefer, L; Analytis, JG | Abstract: We study Shubnikov-de Haas oscillations in single crystals of TaAs and find a previously undetected two-dimensional quantum oscillation that does not belong to the bulk Fermi surface. We cannot find an impurity phase consistent with our observations, and extensive diffraction measurements have not shown the presence of known impurity phases. We conjecture that the frequency originates from surface states that are sensitive to surface disorder. One candidate is the interference of coherent quasiparticles traversing two distinct Fermi arcs on the [001] crystallographic surface. The frequency and effective mass quantitatively agree with predictions of density functional theory and previous angle-resolved photoemission spectroscopy measurements of the Fermi arcs.
- Published
- 2020
- Full Text
- View/download PDF
9. High density of states in the pseudogap phase of the cuprate superconductor HgBa2CuO4+δ from low-temperature normal-state specific heat
- Author
-
Anne Forget, Dorothée Colson, A. Demuer, Louis Taillefer, Christophe Marcenat, Thierry Klein, Anaëlle Legros, D. LeBoeuf, and Clément Girod
- Subjects
Superconductivity ,Physics ,Condensed matter physics ,Quantum oscillations ,Fermi surface ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Effective mass (solid-state physics) ,Cuprate superconductor ,Condensed Matter::Superconductivity ,0103 physical sciences ,Density of states ,Cuprate ,010306 general physics ,0210 nano-technology ,Pseudogap - Abstract
The specific heat $C$ of the single-layer cuprate superconductor ${\mathrm{HgBa}}_{2}{\mathrm{CuO}}_{4+\ensuremath{\delta}}$ was measured in an underdoped crystal with ${T}_{\mathrm{c}}=72$ K at temperatures down to 2 K in magnetic fields up to 35 T, a field large enough to suppress superconductivity at that doping ($p\ensuremath{\simeq}0.09$). In the normal state at $H=35$ T, a residual linear term of magnitude $\ensuremath{\gamma}=12\ifmmode\pm\else\textpm\fi{}2$ mJ/${\mathrm{K}}^{2}\phantom{\rule{0.16em}{0ex}}\mathrm{mol}$ is observed in $C/T$ as $T\ensuremath{\rightarrow}0$, a direct measure of the electronic density of states. This high value of $\ensuremath{\gamma}$ has two major implications. First, it is significantly larger than the value measured in overdoped cuprates outside the pseudogap phase ($pg\phantom{\rule{4pt}{0ex}}{p}^{★}$), such as ${\mathrm{La}}_{2\ensuremath{-}x}{\mathrm{Sr}}_{x}{\mathrm{CuO}}_{4}$ and ${\mathrm{Tl}}_{2}{\mathrm{Ba}}_{2}{\mathrm{CuO}}_{6+\ensuremath{\delta}}$ at $p\ensuremath{\simeq}0.3$, where $\ensuremath{\gamma}\ensuremath{\simeq}7$ mJ/${\mathrm{K}}^{2}\phantom{\rule{0.16em}{0ex}}\mathrm{mol}$. Given that the pseudogap causes a loss of density of states and assuming that ${\mathrm{HgBa}}_{2}{\mathrm{CuO}}_{4+\ensuremath{\delta}}$ has the same $\ensuremath{\gamma}$ value as other cuprates at $p\ensuremath{\simeq}0.3$, this implies that $\ensuremath{\gamma}$ in ${\mathrm{HgBa}}_{2}{\mathrm{CuO}}_{4+\ensuremath{\delta}}$ must peak between $p\ensuremath{\simeq}0.09$ and $p\ensuremath{\simeq}0.3$, namely, at (or near) the critical doping ${p}^{★}$ where the pseudogap phase is expected to end (${p}^{★}\ensuremath{\simeq}0.2$). Second, the high $\ensuremath{\gamma}$ value implies that the Fermi surface must consist of more than the single electronlike pocket detected by quantum oscillations in ${\mathrm{HgBa}}_{2}{\mathrm{CuO}}_{4+\ensuremath{\delta}}$ at $p\ensuremath{\simeq}0.09$, whose effective mass ${m}^{★}=2.7{m}_{0}$ yields only $\ensuremath{\gamma}=4.0$ mJ/${\mathrm{K}}^{2}\phantom{\rule{0.16em}{0ex}}\mathrm{mol}$. This missing mass imposes a revision of the current scenario for how pseudogap and charge order, respectively, transform and reconstruct the Fermi surface of cuprates.
- Published
- 2020
- Full Text
- View/download PDF
10. Thermal Hall conductivity in the cuprate Mott insulators Nd$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$
- Author
-
Etienne Lefrancois, Andréanne Allaire, Adrien Gourgout, Maxime Dion, Louis Taillefer, Ruixing Liang, Gael Grissonnanche, Sven Badoux, D. A. Bonn, Marie-Eve Boulanger, Walter Hardy, Xianhui Chen, Anaëlle Legros, and Can Wang
- Subjects
Electronic properties and materials ,Phonon ,High Energy Physics::Lattice ,Science ,Thermal Hall effect ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Superconducting properties and materials ,Superconductivity (cond-mat.supr-con) ,Condensed Matter::Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Condensed Matter::Superconductivity ,0103 physical sciences ,Cuprate ,010306 general physics ,lcsh:Science ,Physics ,Multidisciplinary ,Condensed matter physics ,Spins ,Strongly Correlated Electrons (cond-mat.str-el) ,Scattering ,Mott insulator ,Condensed Matter - Superconductivity ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,3. Good health ,Magnetic field ,lcsh:Q ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,Chirality (chemistry) - Abstract
The heat carriers responsible for the unexpectedly large thermal Hall conductivity of the cuprate Mott insulator La$_2$CuO$_4$ were recently shown to be phonons. However, the mechanism by which phonons in cuprates acquire chirality in a magnetic field is still unknown. Here, we report a similar thermal Hall conductivity in two cuprate Mott insulators with significantly different crystal structures and magnetic orders - Nd$_2$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$ - and show that two potential mechanisms can be excluded - the scattering of phonons by rare-earth impurities and by structural domains. Our comparative study further reveals that orthorhombicity, apical oxygens, the tilting of oxygen octahedra and the canting of spins out of the CuO$_2$ planes are not essential to the mechanism of chirality. Our findings point to a chiral mechanism coming from a coupling of acoustic phonons to the intrinsic excitations of the CuO$_2$ planes., 29 pages, 8 figures
- Published
- 2020
11. Crystal growth and doping control of HgBa2CuO4+δ, the model compound for high-T superconductors
- Author
-
Alain Sacuto, B. Loret, Patrick Bonnaillie, G. Collin, A. Forget, Pierre Thuéry, Dorothée Colson, Anaëlle Legros, Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département de physique [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de recherches de métallurgie physique (SRMP), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Chimie Moléculaire et de Catalyse pour l'Energie (ex LCCEF) (LCMCE), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Département de Physique (Sherbrooke), Université de Sherbrooke [Sherbrooke], CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction de l'Energie Nucléaire (CEA-DEN), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Diffraction ,Materials science ,Annealing (metallurgy) ,Analytical chemistry ,Physics::Optics ,Crystal growth ,02 engineering and technology ,010402 general chemistry ,superconductors ,01 natural sciences ,Condensed Matter::Materials Science ,Condensed Matter::Superconductivity ,[CHIM.CRIS]Chemical Sciences/Cristallography ,General Materials Science ,Cuprate ,Spectroscopy ,Superconductivity ,Mechanical Engineering ,Doping ,crystal growth ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,X-ray diffraction ,Mechanics of Materials ,Raman spectroscopy ,Condensed Matter::Strongly Correlated Electrons ,magnetic properties ,0210 nano-technology ,Single crystal - Abstract
International audience; A self-flux method to grow very high quality single crystals of the superconducting HgBa2CuO4+δ mercury cuprates is reported. The single crystals are platelet-shaped, with surfaces of high optical quality and good crystallographic properties. Annealing enables optimization of Tc up to Tc max = 94 K. With adequate treatment, the doping level of the crystalline samples can be finely controlled in a wide under-and over-doped range. Preliminary structural characterization from single crystal X-ray diffraction data is given for different doping levels. The signature of under-and over-doping for both pure and gold-substituted crystals has been identified from micro-Raman spectroscopy measurements.
- Published
- 2019
- Full Text
- View/download PDF
12. Universal $T$-linear resistivity and Planckian dissipation in overdoped cuprates
- Author
-
M. Lizaire, Maxime Dion, Nicolas Doiron-Leyraud, Z. Li, Louis Taillefer, H. Raffy, Patrick Fournier, Francis Laliberte, Anaëlle Legros, S. Benhabib, P. Auban-Senzier, Wojciech Tabis, Dorothée Colson, Cyril Proust, B. Vignolle, David Vignolles, Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Quantique [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), AGH University of Science and Technology [Krakow, PL] (AGH UST), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Canadian Institute for Advanced Research (CIFAR), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), ANR-12-BS04-0012,SUPERFIELD,Supraconducteurs en champ magnétique intense(2012), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
Superconductivity ,Physics ,Condensed matter physics ,General Physics and Astronomy ,Fermi energy ,Electron ,01 natural sciences ,Electric charge ,010305 fluids & plasmas ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Electrical resistivity and conductivity ,Scattering rate ,Quantum critical point ,Condensed Matter::Superconductivity ,0103 physical sciences ,Cuprate ,Condensed Matter::Strongly Correlated Electrons ,[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] ,010306 general physics - Abstract
The perfectly linear temperature dependence of the electrical resistivity observed as T → 0 in a variety of metals close to a quantum critical point1–4 is a major puzzle of condensed-matter physics5. Here we show that T-linear resistivity as T → 0 is a generic property of cuprates, associated with a universal scattering rate. We measured the low-temperature resistivity of the bilayer cuprate Bi2Sr2CaCu2O8+δ and found that it exhibits a T-linear dependence with the same slope as in the single-layer cuprates Bi2Sr2CuO6+δ (ref. 6), La1.6−xNd0.4SrxCuO4 (ref. 7) and La2−xSrxCuO4 (ref. 8), despite their very different Fermi surfaces and structural, superconducting and magnetic properties. We then show that the T-linear coefficient (per CuO2 plane), A1□, is given by the universal relation A1□TF = h/2e2, where e is the electron charge, h is the Planck constant and TF is the Fermi temperature. This relation, obtained by assuming that the scattering rate 1/τ of charge carriers reaches the Planckian limit9,10, whereby ħ/τ = kBT, works not only for hole-doped cuprates6–8,11,12 but also for electron-doped cuprates13,14, despite the different nature of their quantum critical point and strength of their electron correlations. A transport study of overdoped cuprates reveals a resistivity that is linear as the temperature approaches 0 K, and is associated with a universal scattering rate.
- Published
- 2019
- Full Text
- View/download PDF
13. The magnetic structures of GdCuSn, GdAgSn and GdAuSn
- Author
-
Dominic H. Ryan, J. M. Cadogan, C D Boyer, Anaëlle Legros, Rasa Rejali, and V I Krylov
- Subjects
Neutron powder diffraction ,Materials science ,Hexagonal crystal system ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Materials Science ,Crystallography ,Ferromagnetism ,Mössbauer spectroscopy ,Antiferromagnetism ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,0210 nano-technology - Abstract
We have determined the magnetic structures of GdCuSn, GdAgSn and GdAuSn using a combination of [Formula: see text]Gd Mossbauer spectroscopy and neutron powder diffraction. Each compound shows the same antiferromagnetic ordering of the Gd sublattice. The magnetic cell is doubled along the crystallographic a-axis (propagation vector [Formula: see text]) with the moments aligned along the hexagonal c-axis, forming alternating ferromagnetic sheets of up/down Gd moments along the a-axis.
- Published
- 2017
14. 166Er Mössbauer spectroscopy study of magnetic ordering in a spinel-based potential spin-ice system: CdEr2S4
- Author
-
Dominic H. Ryan, P. Dalmas de Réotier, A. Yaouanc, Anaëlle Legros, C. Marin, McGill University = Université McGill [Montréal, Canada], Instrumentation, Material and Correlated Electrons Physics (IMAPEC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[PHYS]Physics [physics] ,Magnetic structure ,Condensed matter physics ,Chemistry ,Relaxation (NMR) ,Hyperfine field ,Spin–lattice relaxation ,General Physics and Astronomy ,Paramagnetic relaxation ,Magnetic effects ,Magnetic orders ,Magnetic susceptibility ,Pyrochlores ,Mossbauer spectroscopies ,Spin ice ,Magnetization ,Paramagnetism ,Hyperfine structure ,Erbium - Abstract
International audience; Er-166 Mossbauer spectroscopy measurements of CdEr2S4 show a large hyperfine field (B-hf) of 727.6(8) T at 5K and clear evidence for slow paramagnetic relaxation with an energy barrier to reversal of 114(3) K. This behaviour stands in strong contrast to that of the corresponding pyrochlores (Er2Sn2O7 and Er2Ti2O7) where no magnetic effects are seen down to 1.56 K. The clearly dynamic Er-166 Mossbauer spectra and the absence of a break in the susceptibility data suggest that there is no magnetic order above 1.8K in CdEr2S4. (C) 2015 AIP Publishing LLC.
- Published
- 2015
- Full Text
- View/download PDF
15. Modulated ferromagnetic ordering and the magnetocaloric response of Eu4PdMg
- Author
-
Anaëlle Legros, Roxana Flacau, D. H. Ryan, J. M. Cadogan, Oliver Niehaus, and Rainer Pöttgen
- Subjects
Materials science ,Magnetic moment ,Mössbauer effect ,Condensed matter physics ,Magnetic structure ,Neutron diffraction ,General Physics and Astronomy ,chemistry.chemical_element ,Condensed Matter::Materials Science ,Magnetization ,Ferromagnetism ,chemistry ,Magnetic refrigeration ,Condensed Matter::Strongly Correlated Electrons ,Europium - Abstract
Neutron powder diffraction confirms that the primary ordering mode in Eu4PdMg is ferromagnetic with a europium moment of 6.5(2) μB. 151Eu Mossbauer spectroscopy shows that the unusual linear temperature dependence of the magnetisation reported for this system is an intrinsic property and not an artefact of the applied field. The form and temperature evolution of the 151Eu Mossbauer spectra strongly suggest that there is an incommensurate modulation to the magnetic structure that modifies the basic ferromagnetic order. This modulated structure may be the origin of the broad magnetocaloric response previously observed in Eu4PdMg.
- Published
- 2015
- Full Text
- View/download PDF
16. Linear-in temperature resistivity from an isotropic Planckian scattering rate
- Author
-
Simon Verret, David Graf, Clément Collignon, Yawen Fang, Brad Ramshaw, Francis Laliberte, Paul Goddard, Jianshi Zhou, Louis Taillefer, Gael Grissonnanche, and Anaëlle Legros
- Subjects
Physics ,Multidisciplinary ,Magnetoresistance ,Condensed matter physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Scattering ,Condensed Matter - Superconductivity ,FOS: Physical sciences ,Fermi surface ,Angle-resolved photoemission spectroscopy ,Inelastic scattering ,01 natural sciences ,010305 fluids & plasmas ,3. Good health ,Superconductivity (cond-mat.supr-con) ,Condensed Matter - Strongly Correlated Electrons ,Electrical resistivity and conductivity ,Scattering rate ,0103 physical sciences ,Cuprate ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics - Abstract
A variety of "strange metals" exhibit resistivity that decreases linearly with temperature as $T\rightarrow 0$, in contrast with conventional metals where resistivity decreases as $T^2$. This $T$-linear resistivity has been attributed to charge carriers scattering at a rate given by $\hbar/\tau=\alpha k_{\rm B} T$, where $\alpha$ is a constant of order unity. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering---the "Planckian limit"---but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance (ADMR) of Nd-LSCO---a hole-doped cuprate that displays $T$-linear resistivity down to the lowest measured temperatures. The ADMR unveils a well-defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy (ARPES) measurements and reveals a $T$-linear scattering rate that saturates the Planckian limit, namely $\alpha = 1.2 \pm 0.4$. Remarkably, we find that this Planckian scattering rate is isotropic, i.e. it is independent of direction, in contrast with expectations from "hot-spot" models. Our findings suggest that $T$-linear resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit., Comment: 27 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:2004.01725
- Full Text
- View/download PDF
17. Fermi surface transformation at the pseudogap critical point of a cuprate superconductor
- Author
-
Yawen Fang, Gaël Grissonnanche, Anaëlle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Amirreza Ataei, Maxime Dion, Jianshi Zhou, David Graf, Michael J. Lawler, Paul A. Goddard, Louis Taillefer, and B. J. Ramshaw
- Subjects
Superconductivity (cond-mat.supr-con) ,Condensed Matter::Quantum Gases ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter::Superconductivity ,Condensed Matter - Superconductivity ,TK ,FOS: Physical sciences ,General Physics and Astronomy ,Condensed Matter::Strongly Correlated Electrons ,QC - Abstract
The nature of the pseudogap phase remains a major barrier to our understanding of cuprate high-temperature superconductivity. Whether or not this metallic phase is defined by any of the reported broken symmetries, the topology of its Fermi surface remains a fundamental open question. Here we use angle-dependent magnetoresistance (ADMR) to measure the Fermi surface of the cuprate Nd-LSCO. Above the critical doping $p^*$ -- outside of the pseudogap phase -- we fit the ADMR data and extract a Fermi surface geometry that is in quantitative agreement with angle-resolved photoemission. Below $p^*$ -- within the pseudogap phase -- the ADMR is qualitatively different, revealing a clear transformation of the Fermi surface. Changes in the quasiparticle lifetime across $p^*$ are ruled out as the cause of this transformation. Instead we find that our data are most consistent with a reconstruction of the Fermi surface by a $Q=(\pi, \pi)$ wavevector., Comment: 32 pages, 11 figures
- Full Text
- View/download PDF
18. The magnetic structures of GdCuSn, GdAgSn and GdAuSn.
- Author
-
D H Ryan, J M Cadogan, V I Krylov, Anaëlle Legros, Rasa Rejali, and C D Boyer
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.