466,534 results on '"An QU"'
Search Results
2. Visual Autoregressive Modeling for Image Super-Resolution
- Author
-
Qu, Yunpeng, Yuan, Kun, Hao, Jinhua, Zhao, Kai, Xie, Qizhi, Sun, Ming, and Zhou, Chao
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Image Super-Resolution (ISR) has seen significant progress with the introduction of remarkable generative models. However, challenges such as the trade-off issues between fidelity and realism, as well as computational complexity, have also posed limitations on their application. Building upon the tremendous success of autoregressive models in the language domain, we propose \textbf{VARSR}, a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction. To effectively integrate and preserve semantic information in low-resolution images, we propose using prefix tokens to incorporate the condition. Scale-aligned Rotary Positional Encodings are introduced to capture spatial structures and the diffusion refiner is utilized for modeling quantization residual loss to achieve pixel-level fidelity. Image-based Classifier-free Guidance is proposed to guide the generation of more realistic images. Furthermore, we collect large-scale data and design a training process to obtain robust generative priors. Quantitative and qualitative results show that VARSR is capable of generating high-fidelity and high-realism images with more efficiency than diffusion-based methods. Our codes will be released at https://github.com/qyp2000/VARSR., Comment: 20 pages; 17 figures
- Published
- 2025
3. Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
- Author
-
Qu, Yansong, Chen, Dian, Li, Xinyang, Li, Xiaofan, Zhang, Shengchuan, Cao, Liujuan, and Ji, Rongrong
- Subjects
Computer Science - Graphics ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian., Comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
- Published
- 2025
4. GENIE: Generative Note Information Extraction model for structuring EHR data
- Author
-
Ying, Huaiyuan, Yuan, Hongyi, Lu, Jinsen, Qu, Zitian, Zhao, Yang, Zhao, Zhengyun, Kohane, Isaac, Cai, Tianxi, and Yu, Sheng
- Subjects
Computer Science - Computation and Language - Abstract
Electronic Health Records (EHRs) hold immense potential for advancing healthcare, offering rich, longitudinal data that combines structured information with valuable insights from unstructured clinical notes. However, the unstructured nature of clinical text poses significant challenges for secondary applications. Traditional methods for structuring EHR free-text data, such as rule-based systems and multi-stage pipelines, are often limited by their time-consuming configurations and inability to adapt across clinical notes from diverse healthcare settings. Few systems provide a comprehensive attribute extraction for terminologies. While giant large language models (LLMs) like GPT-4 and LLaMA 405B excel at structuring tasks, they are slow, costly, and impractical for large-scale use. To overcome these limitations, we introduce GENIE, a Generative Note Information Extraction system that leverages LLMs to streamline the structuring of unstructured clinical text into usable data with standardized format. GENIE processes entire paragraphs in a single pass, extracting entities, assertion statuses, locations, modifiers, values, and purposes with high accuracy. Its unified, end-to-end approach simplifies workflows, reduces errors, and eliminates the need for extensive manual intervention. Using a robust data preparation pipeline and fine-tuned small scale LLMs, GENIE achieves competitive performance across multiple information extraction tasks, outperforming traditional tools like cTAKES and MetaMap and can handle extra attributes to be extracted. GENIE strongly enhances real-world applicability and scalability in healthcare systems. By open-sourcing the model and test data, we aim to encourage collaboration and drive further advancements in EHR structurization.
- Published
- 2025
5. MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding
- Author
-
Zuo, Yuxin, Qu, Shang, Li, Yifei, Chen, Zhangren, Zhu, Xuekai, Hua, Ermo, Zhang, Kaiyan, Ding, Ning, and Zhou, Bowen
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 16 leading models on MedXpertQA. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models.
- Published
- 2025
6. A Deep Spatio-Temporal Architecture for Dynamic Effective Connectivity Network Analysis Based on Dynamic Causal Discovery
- Author
-
Xu, Faming, Wang, Yiding, Qiao, Chen, Qu, Gang, Calhoun, Vince D., Stephen, Julia M., Wilson, Tony W., and Wang, Yu-Ping
- Subjects
Computer Science - Machine Learning - Abstract
Dynamic effective connectivity networks (dECNs) reveal the changing directed brain activity and the dynamic causal influences among brain regions, which facilitate the identification of individual differences and enhance the understanding of human brain. Although the existing causal discovery methods have shown promising results in effective connectivity network analysis, they often overlook the dynamics of causality, in addition to the incorporation of spatio-temporal information in brain activity data. To address these issues, we propose a deep spatio-temporal fusion architecture, which employs a dynamic causal deep encoder to incorporate spatio-temporal information into dynamic causality modeling, and a dynamic causal deep decoder to verify the discovered causality. The effectiveness of the proposed method is first illustrated with simulated data. Then, experimental results from Philadelphia Neurodevelopmental Cohort (PNC) demonstrate the superiority of the proposed method in inferring dECNs, which reveal the dynamic evolution of directed flow between brain regions. The analysis shows the difference of dECNs between young adults and children. Specifically, the directed brain functional networks transit from fluctuating undifferentiated systems to more stable specialized networks as one grows. This observation provides further evidence on the modularization and adaptation of brain networks during development, leading to higher cognitive abilities observed in young adults.
- Published
- 2025
7. The quantum nature of ubiquitous vibrational features revealed for ethylene glycol
- Author
-
Nandi, Apurba, Conte, Riccardo, Pandey, Priyanka, Houston, Paul L., Qu, Chen, Yu, Qi, and Bowman, Joel M.
- Subjects
Physics - Chemical Physics - Abstract
Vibrational properties of molecules are of widespread interest and importance in chemistry and biochemistry. The reliability of widely employed approximate computational methods is questioned here against the complex experimental spectrum of ethylene glycol. Comparisons between quantum vibrational self-consistent field and virtual-state configuration interaction (VSCF/VCI), adiabatically switched semiclassical initial value representation (AS SCIVR), and thermostatted ring polymer molecular dynamics (TRPMD) calculations are made using a full-dimensional machine-learned potential energy surface. Calculations are done for five low-lying conformers and compared with the experiment, with a focus on the high-frequency, OH-stretches, and CH-stretches, part of the spectrum. Fermi resonances are found in the analysis of VSCF/VCI eigenstates belonging to the CH-stretching band. Results of comparable accuracy, quality, and level of detail are obtained by means of AS SCIVR. The current VSCF/VCI and AS-SCIVR power spectra largely close the gaps between the experiment and TRPMD and classical MD calculations. Analysis of these results provide guidance on what level of accuracy to expect from TRPMD and classical MD calculations of the vibrational spectra for ubiquitous CH and OH-stretches bands. This work shows that even general vibrational features require a proper quantum treatment usually not achievable by the most popular theoretical approaches.
- Published
- 2025
8. Equi-centro-affine extremal hypersurfaces in ellipsoid
- Author
-
Yang, Yun and Qu, Changzheng
- Subjects
Mathematics - Differential Geometry - Abstract
This paper explores equi-centro-affine extremal hypersurfaces in an ellipsoid. By analyzing the evolution of invariant submanifold flows under centro-affine unimodular transformations, we derive the first and second variational formulas for the associated invariant area. Stability analysis reveals that the circles with radius $r=\sqrt{6}/3$ on $\mathbb{S}^2(1)$ are characterized as being equi-centro-affine maximal. Furthermore, we provide a detailed classification of the compact isoparametric equi-centro-affine extremal hypersurfaces on $(n+1)$-dimensional sphere, as well as the generalized closed equi-centro-affine extremal curves on $2$-dimensional sphere. These curves are shown to belong to a family of transcendental curves $\mathrm{x}_{p,q}$ ($p,q$ are two coprime positive integers satisfying that $1/2
- Published
- 2025
9. Post-Training Quantization for 3D Medical Image Segmentation: A Practical Study on Real Inference Engines
- Author
-
Qu, Chongyu, Zhao, Ritchie, Yu, Ye, Liu, Bin, Yao, Tianyuan, Zhu, Junchao, Landman, Bennett A., Tang, Yucheng, and Huo, Yuankai
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Quantizing deep neural networks ,reducing the precision (bit-width) of their computations, can remarkably decrease memory usage and accelerate processing, making these models more suitable for large-scale medical imaging applications with limited computational resources. However, many existing methods studied "fake quantization", which simulates lower precision operations during inference, but does not actually reduce model size or improve real-world inference speed. Moreover, the potential of deploying real 3D low-bit quantization on modern GPUs is still unexplored. In this study, we introduce a real post-training quantization (PTQ) framework that successfully implements true 8-bit quantization on state-of-the-art (SOTA) 3D medical segmentation models, i.e., U-Net, SegResNet, SwinUNETR, nnU-Net, UNesT, TransUNet, ST-UNet,and VISTA3D. Our approach involves two main steps. First, we use TensorRT to perform fake quantization for both weights and activations with unlabeled calibration dataset. Second, we convert this fake quantization into real quantization via TensorRT engine on real GPUs, resulting in real-world reductions in model size and inference latency. Extensive experiments demonstrate that our framework effectively performs 8-bit quantization on GPUs without sacrificing model performance. This advancement enables the deployment of efficient deep learning models in medical imaging applications where computational resources are constrained. The code and models have been released, including U-Net, TransUNet pretrained on the BTCV dataset for abdominal (13-label) segmentation, UNesT pretrained on the Whole Brain Dataset for whole brain (133-label) segmentation, and nnU-Net, SegResNet, SwinUNETR and VISTA3D pretrained on TotalSegmentator V2 for full body (104-label) segmentation. https://github.com/hrlblab/PTQ.
- Published
- 2025
10. Phase Noise Resilient Codebook Design for Sparse Code Multiple Access
- Author
-
Liu, Haibo, Luo, Qu, Liu, Zilong, Luo, Shan, Xiao, Pei, and Yuan, Xiaojun
- Subjects
Computer Science - Information Theory - Abstract
Sparse code multiple access (SCMA) is a promising technique for future machine type communication systems due to its superior spectral efficiency and capability for supporting massive connectivity. This paper proposes a novel class of sparse codebooks to improve the error rate performance of SCMA in the presence of phase noise (PN). Specifically, we first analyze the error rate performance of SCMA impaired by looking into the pair-wise error probability. Then, a novel codebook design metric, called minimum PN metric (MPNM), is proposed. In addition, to design PN resilient codebooks, we propose a novel pulse-amplitude modulation (PAM)-based low projection mother constellation (LP-MC), called LP-PAM. The codebooks for different users are obtained by rotating and scaling the MC, where the phase rotation angles and scaling factors for different users are optimized by maximizing the proposed MPNM. Numerical results show that the proposed PNCBs have larger MPNM values and achieve improved error rate performance than the-state-of-the-art codebooks.
- Published
- 2025
11. HateBench: Benchmarking Hate Speech Detectors on LLM-Generated Content and Hate Campaigns
- Author
-
Shen, Xinyue, Wu, Yixin, Qu, Yiting, Backes, Michael, Zannettou, Savvas, and Zhang, Yang
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
Large Language Models (LLMs) have raised increasing concerns about their misuse in generating hate speech. Among all the efforts to address this issue, hate speech detectors play a crucial role. However, the effectiveness of different detectors against LLM-generated hate speech remains largely unknown. In this paper, we propose HateBench, a framework for benchmarking hate speech detectors on LLM-generated hate speech. We first construct a hate speech dataset of 7,838 samples generated by six widely-used LLMs covering 34 identity groups, with meticulous annotations by three labelers. We then assess the effectiveness of eight representative hate speech detectors on the LLM-generated dataset. Our results show that while detectors are generally effective in identifying LLM-generated hate speech, their performance degrades with newer versions of LLMs. We also reveal the potential of LLM-driven hate campaigns, a new threat that LLMs bring to the field of hate speech detection. By leveraging advanced techniques like adversarial attacks and model stealing attacks, the adversary can intentionally evade the detector and automate hate campaigns online. The most potent adversarial attack achieves an attack success rate of 0.966, and its attack efficiency can be further improved by $13-21\times$ through model stealing attacks with acceptable attack performance. We hope our study can serve as a call to action for the research community and platform moderators to fortify defenses against these emerging threats.
- Published
- 2025
12. Properties of 4D spinfoam quantum geometry: Results from next-to-leading order spinfoam large-$j$ asymptotics of 1-5 Pachner move
- Author
-
Li, Haida, Han, Muxin, Liu, Hongguang, Song, Shicong, and Qu, Dongxue
- Subjects
General Relativity and Quantum Cosmology - Abstract
This paper proposes several criteria to probe the non-trivialities of 4-dimensional geometry that impact spinfoam amplitude. These criteria include the standard deviation of 4-volumes of the constituting 4-simplices, the smallest 4-simplex volume, and whether the directions of tetrahedron 4-normals are close to the null direction. By numerically computing and analyzing the spinfoam amplitudes up to the next-to-leading order of 1-5 Pachner move samples with the same boundary 4-simplex, we reveal the relationship between 4-dimensional geometry and spinfoam amplitudes, as large standard deviation of 4-simplex volumes and small 4-simplex volume can result in both leading order and next-to-leading order amplitudes being large. Furthermore, the numerical result indicates that the distance from tetrahedron 4-normals to the null direction has a greater impact on increasing the next-to-leading order amplitude than on the leading order amplitude, making it primarily a quantum effect.
- Published
- 2025
13. SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model
- Author
-
Qu, Delin, Song, Haoming, Chen, Qizhi, Yao, Yuanqi, Ye, Xinyi, Ding, Yan, Wang, Zhigang, Gu, JiaYuan, Zhao, Bin, Wang, Dong, and Li, Xuelong
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence - Abstract
In this paper, we claim that spatial understanding is the keypoint in robot manipulation, and propose SpatialVLA to explore effective spatial representations for the robot foundation model. Specifically, we introduce Ego3D Position Encoding to inject 3D information into the input observations of the visual-language-action model, and propose Adaptive Action Grids to represent spatial robot movement actions with adaptive discretized action grids, facilitating learning generalizable and transferrable spatial action knowledge for cross-robot control. SpatialVLA is first pre-trained on top of a vision-language model with 1.1 Million real-world robot episodes, to learn a generalist manipulation policy across multiple robot environments and tasks. After pre-training, SpatialVLA is directly applied to perform numerous tasks in a zero-shot manner. The superior results in both simulation and real-world robots demonstrate its advantage of inferring complex robot motion trajectories and its strong in-domain multi-task generalization ability. We further show the proposed Adaptive Action Grids offer a new and effective way to fine-tune the pre-trained SpatialVLA model for new simulation and real-world setups, where the pre-learned action grids are re-discretized to capture robot-specific spatial action movements of new setups. The superior results from extensive evaluations demonstrate the exceptional in-distribution generalization and out-of-distribution adaptation capability, highlighting the crucial benefit of the proposed spatial-aware representations for generalist robot policy learning. All the details and codes will be open-sourced.
- Published
- 2025
14. SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
- Author
-
Lu, Dakuan, Tan, Xiaoyu, Xu, Rui, Yao, Tianchu, Qu, Chao, Chu, Wei, Xu, Yinghui, and Qi, Yuan
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval - Abstract
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open., Comment: 9 pages, 1 figures
- Published
- 2025
15. GiantHunter: Accurate detection of giant virus in metagenomic data using reinforcement-learning and Monte Carlo tree search
- Author
-
Qu, Fuchuan, Peng, Cheng, Guan, Jiaojiao, Wang, Donglin, Sun, Yanni, and Shang, Jiayu
- Subjects
Quantitative Biology - Genomics - Abstract
Motivation: Nucleocytoplasmic large DNA viruses (NCLDVs) are notable for their large genomes and extensive gene repertoires, which contribute to their widespread environmental presence and critical roles in processes such as host metabolic reprogramming and nutrient cycling. Metagenomic sequencing has emerged as a powerful tool for uncovering novel NCLDVs in environmental samples. However, identifying NCLDV sequences in metagenomic data remains challenging due to their high genomic diversity, limited reference genomes, and shared regions with other microbes. Existing alignment-based and machine learning methods struggle with achieving optimal trade-offs between sensitivity and precision. Results: In this work, we present GiantHunter, a reinforcement learning-based tool for identifying NCLDVs from metagenomic data. By employing a Monte Carlo tree search strategy, GiantHunter dynamically selects representative non-NCLDV sequences as the negative training data, enabling the model to establish a robust decision boundary. Benchmarking on rigorously designed experiments shows that GiantHunter achieves high precision while maintaining competitive sensitivity, improving the F1-score by 10% and reducing computational cost by 90% compared to the second-best method. To demonstrate its real-world utility, we applied GiantHunter to 60 metagenomic datasets collected from six cities along the Yangtze River, located both upstream and downstream of the Three Gorges Dam. The results reveal significant differences in NCLDV diversity correlated with proximity to the dam, likely influenced by reduced flow velocity caused by the dam. These findings highlight the potential of GiantSeeker to advance our understanding of NCLDVs and their ecological roles in diverse environments., Comment: 15 pages, 7 figures
- Published
- 2025
16. Observation of $h_{c}$ radiative decays to multiple light hadrons and the tensor state $f_2(1270)$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, M. H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chai, X. Y., Chang, J. F., Che, G. R., Che, Y. Z., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Choi, S. K., Chu, X., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Ding, Y. X., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, G. F., Fan, J. J., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Y. Y., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, K. D., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, Q. P., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, P., Huang, X. T., Huang, Y. P., Huang, Y. S., Hussain, T., Hüsken, N., der Wiesche, N. in, Jackson, J., Janchiv, S., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. J., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lan, Q., Lan, W. N., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, C. K., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, K., Li, K. L., Li, L. J., Li, Lei, Li, M. H., Li, M. R., Li, P. L., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, T., Li, T. Y., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Y., Li, X. Z., Li, Y., Li, Y. G., Li, Z. J., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, C. X., Lin, D. X., Lin, L. Q., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F., Liu, F. H., Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. H., Liu, H. M., Liu, Huihui, Liu, J. B., Liu, J. J., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, W. T., Liu, X., Liu, X. Y., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, Y., Lu, Y. H., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, J. S., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Lyu, Y. H., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, L. R., Ma, Q. M., Ma, R. Q., Ma, R. Y., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y. M., Maas, F. E., MacKay, I., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Y. H., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H. R., Qi, M., Qian, S., Qian, W. B., Qiao, C. F., Qiao, J. H., Qin, J. J., Qin, J. L., Qin, L. Q., Qin, L. Y., Qin, P. B., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Rivetti, A., Rolo, M., Rong, G., Rong, S. S., Rosner, Ch., Ruan, M. Q., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, J. L., Shi, J. Y., Shi, S. Y., Shi, X., Song, H. L., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, S. S, Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, Y., Sun, Y. C., Sun, Y. H., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, L. F., Tang, M., Tang, Y. A., Tao, L. Y., Tat, M., Teng, J. X., Thoren, V., Tian, J. Y., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, B., Wang, Bo, Wang, C., Wang, D. Y., Wang, H. J., Wang, J. J., Wang, K., Wang, L. L., Wang, L. W., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Yuan, Wang, Z., Wang, Z. L., Wang, Z. Y., Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, Lianjie, Wu, S. G., Wu, S. M., Wu, X., Wu, X. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, H., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, K. J., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W. L., Xu, X. P., Xu, Y., Xu, Y. C., Xu, Z. S., Yan, F., Yan, H. Y., Yan, L., Yan, W. B., Yan, W. C., Yan, W. P., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, J. H., Yang, R. J., Yang, T., Yang, Y., Yang, Y. F., Yang, Y. Q., Yang, Y. X., Yang, Y. Z., Ye, M., Ye, M. H., Yin, Junhao, You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, M. C., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, H., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Yue, Ying, Zafar, A. A., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, N., Zhang, P., Zhang, Q., Zhang, Q. Y., Zhang, R. Y., Zhang, S. H., Zhang, Shulei, Zhang, X. M., Zhang, X. Y, Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. X., Zhang, Z. Y., Zhang, Z. Z., Zhang, Zh. Zh., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, Lei, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. L., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, X. R., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhou, Z. C., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, T. J., Zhu, W. D., Zhu, W. J., Zhu, W. Z., Zhu, Y. C., Zhu, Z. A., Zhuang, X. Y., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using $\psi(3686)\rightarrow \pi^{0} h_{c}$ decays from a data sample of $(27.12\pm0.14)\times10^{8}$ $\psi(3686)$ events collected by the BESIII detector at the BEPCII collider, $h_c$ radiative decays to $\gamma\pi^{+}\pi^{-},~\gamma\pi^{+}\pi^{-}\eta,~\gamma2(\pi^{+}\pi^{-})$, and $\gamma p\bar{p}$ are observed for the first time, each with a significance greater than $5\sigma$. The corresponding branching fractions are measured. Furthermore, intermediate states below 2.8 GeV/$c^{2}$ are investigated, leading to the first observation of the decay process of $h_c\rightarrow\gamma f_{2}(1270)\rightarrow\gamma\pi^{+}\pi^{-}$ with a significance of $5.5\,\sigma$. This observation represents the first instance of $h_c$ radiative decay to a tensor state.
- Published
- 2025
17. Memory Reviver: Supporting Photo-Collection Reminiscence for People with Visual Impairment via a Proactive Chatbot
- Author
-
Xu, Shuchang, Chen, Chang, Liu, Zichen, Jin, Xiaofu, Yuan, Linping, Yan, Yukang, and Qu, Huamin
- Subjects
Computer Science - Human-Computer Interaction - Abstract
Reminiscing with photo collections offers significant psychological benefits but poses challenges for people with visual impairment (PVI). Their current reliance on sighted help restricts the flexibility of this activity. In response, we explored using a chatbot in a preliminary study. We identified two primary challenges that hinder effective reminiscence with a chatbot: the scattering of information and a lack of proactive guidance. To address these limitations, we present Memory Reviver, a proactive chatbot that helps PVI reminisce with a photo collection through natural language communication. Memory Reviver incorporates two novel features: (1) a Memory Tree, which uses a hierarchical structure to organize the information in a photo collection; and (2) a Proactive Strategy, which actively delivers information to users at proper conversation rounds. Evaluation with twelve PVI demonstrated that Memory Reviver effectively facilitated engaging reminiscence, enhanced understanding of photo collections, and delivered natural conversational experiences. Based on our findings, we distill implications for supporting photo reminiscence and designing chatbots for PVI.
- Published
- 2025
18. DanmuA11y: Making Time-Synced On-Screen Video Comments (Danmu) Accessible to Blind and Low Vision Users via Multi-Viewer Audio Discussions
- Author
-
Xu, Shuchang, Jin, Xiaofu, Qu, Huamin, and Yan, Yukang
- Subjects
Computer Science - Human-Computer Interaction - Abstract
By overlaying time-synced user comments on videos, Danmu creates a co-watching experience for online viewers. However, its visual-centric design poses significant challenges for blind and low vision (BLV) viewers. Our formative study identified three primary challenges that hinder BLV viewers' engagement with Danmu: the lack of visual context, the speech interference between comments and videos, and the disorganization of comments. To address these challenges, we present DanmuA11y, a system that makes Danmu accessible by transforming it into multi-viewer audio discussions. DanmuA11y incorporates three core features: (1) Augmenting Danmu with visual context, (2) Seamlessly integrating Danmu into videos, and (3) Presenting Danmu via multi-viewer discussions. Evaluation with twelve BLV viewers demonstrated that DanmuA11y significantly improved Danmu comprehension, provided smooth viewing experiences, and fostered social connections among viewers. We further highlight implications for enhancing commentary accessibility in video-based social media and live-streaming platforms.
- Published
- 2025
- Full Text
- View/download PDF
19. Time-periodic transonic shock solution in divergent nozzles
- Author
-
Zhang, Xiaomin, Qu, Peng, and Yu, Huimin
- Subjects
Mathematics - Analysis of PDEs - Abstract
We demonstrate that it is possible to control a normal transonic shock to move periodically by adjusting the boundary conditions at the entrance or the exit of the tube, for which, the phenomena has been observed in engineering. In this paper, we describe the gas by a quasi-one-dimensional compressible Euler equations with temporal periodic boundary conditions and prove the global existence and dynamical stability of the time-periodic transonic shock solution with an iteration method. The major difficulty is to determine the position of the moving shock front, which can be obtained by a free boundary problem in the subsonic domain. We decouple this free boundary problem by the $Rankine-Hugoniot$ conditions and a two-step iteration process.
- Published
- 2025
20. Evidence for $B^-\rightarrow D^{**0}\tau^-\overline{\nu_{\tau}}$ decays
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Balboni, A., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartolini, M., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bonacci, R. B., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonaura, A., Buonincontri, L., Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cervenkov, D., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Cholak, S., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collaviti, S., Collins, P., Colombo, T., Colonna, M., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Darze, G., Davidson, A., Davies, J. E., Davis, A., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Firlej, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fiutowski, T., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Gardner, P., Garg, K. G., Garrido, L., Gaspar, C., Geertsema, R. E., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Gironell, P. Gironella, Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golobardes, E., Golubkov, D., Golutvin, A., Fernandez, S. Gomez, Gomulka, W., Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guittiere, M., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Hajheidari, M., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Harris, T. H., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Idzik, M., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, M., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Linton, H., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Salvia, A. Lobo, Loi, A., Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Majewski, M. W., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manganella, F. M., Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Gomez, D. Martinez, Santos, D. Martinez, Vidal, F. Martinez, Granollers, A. Martorell i, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., Mcconnell, L., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Moron, J., Morren, W., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Niu, Q., Nogarolli, P., Nogga, P., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Pan, X., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Parmar, D., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perrevoort, A., Perro, A., Peters, M. J., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Piccolo, L., Pietrzyk, B., Pietrzyk, G., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Alvarez, A. Rodriguez, Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzhikov, A., Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Segal, I., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Sommerfeld, N. S., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swientek, K., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tang, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Urbach, B., Ursov, E., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Verdoglia, M., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, H., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Y. W., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. J., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Winn, M., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, X., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xu, A., Xu, J., Xu, L., Xu, M., Xu, Z., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhao, Y., Zharkova, A., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment - Abstract
The first evidence for the decay $B^-\rightarrow D^{**0}\tau^-\overline{\nu_{\tau}}$ is obtained using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb$^{-1}$ , at centre-of-mass energies of 7, 8 and 13 Tev. Here, the $D^{**0}$ meson represents any of the three excited charm mesons $D_{1}(2420)^{0}$, $D_{2}^{*}(2460)^{0}$, and $D_{1}^{'}(2400)^{0}$. The $B^-\rightarrow D^{**0}\tau^-\overline{\nu_{\tau}}$ signal is measured with a significance of 3.5 $\sigma$, including systematic uncertainties. The combined branching fraction $BR(B^-\rightarrow D^{**0}_{1,2}\tau^-\overline{\nu_{\tau}})\times BR(D^{**0}_{1,2}\rightarrow D^{*+}\pi^-)$, where $D^{**0}_{1,2}$ denotes both $D_{1}(2420)^{0}$ and $D_{2}^{*}(2460)^{0}$ contributions, is measured to be $(0.051\pm0.013(stat)\pm 0.006(syst)\pm 0.009(\rm{ext}) )\%$, where the last uncertainty reflects that of the branching fraction of the normalisation channel $B^-\rightarrow D^{**0}_{1,2}D_s^{(*)-}$. The ratio between the tauonic and muonic semileptonic $B$ decays, with the latter taken from world average values, is also determined and found to be ${\cal R}(D^{**0}_{1,2})=0.13\pm0.03(stat)\pm0.01(syst)\pm0.02\,(\rm{ext})$., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3300/ (LHCb public pages)
- Published
- 2025
21. Sawtooth crash in tokamak as a sequence of Multi-region Relaxed MHD equilibria
- Author
-
Qu, Zhisong, Zhou, Yao, Kumar, Arunav, Doak, Joshua, Loizu, Joaquim, and Hole, Matthew
- Subjects
Physics - Plasma Physics - Abstract
This study examines the sawtooth crash phenomenon in tokamak plasmas by modelling it as a sequence of Multi-region Relaxed Magnetohydrodynamic (MRxMHD) equilibria. Using the Stepped-Pressure Equilibrium Code (SPEC), we constructed a series of equilibria representing intermediate states during the sawtooth crash, with progressively increasing reconnection regions. Numerical results demonstrated that the system prefers the lower energy non-axisymmetric equilibria with islands and is eventually back to an axisymmetric state, capturing key features of the reconnection process. Comparisons with the nonlinear MHD code M3D-C1 showed remarkable agreement on the field-line topology, the safety factor, and the current profile. However, the simplified MRxMHD model does not resolve the detailed structure of the current sheet. Despite this limitation, MRxMHD offers an insightful approach and a complementary perspective to initial-value MHD simulations.
- Published
- 2025
22. Cross section measurement of $e^{+}e^{-} \to f_{1}(1285)\pi^{+}\pi^{-}$ at center-of-mass energies between $3.808$ and $4.951\rm GeV$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Y. S., Hussain, T., Hölzken, F., Hüsken, N., der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, K., Li, L. J., Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Y., Li, X. Z., Li, Y. G., Li, Z. J., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, D., Liu, F., Liu, F. H., Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. H., Liu, H. M., Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, L. R., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, T., Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., Yin, Junhao, You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y., Zhang, S. H., Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, Lei, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using data samples collected by the \mbox{BESIII} detector located at the Beijing Electron Positron Collider, the cross sections of the process $e^+e^-\to f_{1}(1285)\pi^+\pi^-$ are measured at forty-five center-of-mass energies from $3.808$ to $4.951 {\rm GeV}$. An investigation on the cross section line shape is performed, and no significant structure is observed.
- Published
- 2025
23. On the hook length biases of the $2$- and $3$-regular partitions
- Author
-
Qu, Wenxia and Zang, Wenston J. T.
- Subjects
Mathematics - Combinatorics ,Mathematics - Number Theory - Abstract
Let $b_{t,i}(n)$ denote the total number of the $i$ hooks in the $t$-regular partitions of $n$. Singh and Barman (J. Number Theory { 264} (2024), 41--58) raised two conjectures on $b_{t,i}(n)$. The first conjecture is on the positivity of $b_{3,2}(n)-b_{3,1}(n)$ for $n\ge 28$. The second conjecture states that when $k\ge 3$, $b_{2,k}(n)\ge b_{2,k+1}(n)$ for all $n$ except for $n= k+1$. In this paper, we confirm the first conjecture. {Moreover, we show that for any odd $k\ge 3$, the second conjecture fails for infinitely many $n$.} {Furthermore, we verify that the second conjecture holds for $k=4$ and $6$.} We also propose a conjecture on the even case $k$, which is a modification of Singh and Barman's second conjecture.
- Published
- 2025
24. Sigma: Differential Rescaling of Query, Key and Value for Efficient Language Models
- Author
-
Lin, Zhenghao, Tang, Zihao, Liu, Xiao, Gong, Yeyun, Cheng, Yi, Chen, Qi, Li, Hang, Xin, Ying, Yang, Ziyue, Yang, Kailai, Yan, Yu, Liang, Xiao, Lu, Shuai, Huang, Yiming, Luo, Zheheng, Qu, Lei, Feng, Xuan, Wang, Yaoxiang, Xia, Yuqing, Chen, Feiyang, Jiang, Yuting, Hu, Yasen, Ni, Hao, Li, Binyang, Zhao, Guoshuai, Chiang, Jui-Hao, Guo, Zhongxin, Lin, Chen, Kuang, Kun, Li, Wenjie, Shen, Yelong, Jiao, Jian, Cheng, Peng, and Yang, Mao
- Subjects
Computer Science - Computation and Language - Abstract
We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.
- Published
- 2025
25. Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving
- Author
-
Wang, Lu, Zhang, Tianyuan, Qu, Yang, Liang, Siyuan, Chen, Yuwei, Liu, Aishan, Liu, Xianglong, and Tao, Dacheng
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Vision-language models (VLMs) have significantly advanced autonomous driving (AD) by enhancing reasoning capabilities; however, these models remain highly susceptible to adversarial attacks. While existing research has explored white-box attacks to some extent, the more practical and challenging black-box scenarios remain largely underexplored due to their inherent difficulty. In this paper, we take the first step toward designing black-box adversarial attacks specifically targeting VLMs in AD. We identify two key challenges for achieving effective black-box attacks in this context: the effectiveness across driving reasoning chains in AD systems and the dynamic nature of driving scenarios. To address this, we propose Cascading Adversarial Disruption (CAD). It first introduces Decision Chain Disruption, which targets low-level reasoning breakdown by generating and injecting deceptive semantics, ensuring the perturbations remain effective across the entire decision-making chain. Building on this, we present Risky Scene Induction, which addresses dynamic adaptation by leveraging a surrogate VLM to understand and construct high-level risky scenarios that are likely to result in critical errors in the current driving contexts. Extensive experiments conducted on multiple AD VLMs and benchmarks demonstrate that CAD achieves state-of-the-art attack effectiveness, significantly outperforming existing methods (+13.43% on average). Moreover, we validate its practical applicability through real-world attacks on AD vehicles powered by VLMs, where the route completion rate drops by 61.11% and the vehicle crashes directly into the obstacle vehicle with adversarial patches. Finally, we release CADA dataset, comprising 18,808 adversarial visual-question-answer pairs, to facilitate further evaluation and research in this critical domain. Our codes and dataset will be available after paper's acceptance.
- Published
- 2025
26. Read out the fermion parity of a potential artificial Kitaev chain utilizing a transmon qubit
- Author
-
Zhuo, Enna, Yang, Xiaozhou, Huang, Yuyang, Lyu, Zhaozheng, Li, Ang, Li, Bing, Zhang, Yunxiao, Wang, Xiang, Wang, Duolin, Shi, Yukun, Wang, Anqi, Bakkers, E. P. A. M., Han, Xiaodong, Song, Xiaohui, Li, Peiling, Tong, Bingbing, Dou, Ziwei, Liu, Guangtong, Qu, Fanming, Shen, Jie, and Lu, Li
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum Physics - Abstract
Artificial Kitaev chains have emerged as a promising platform for realizing topological quantum computing. Once the chains are formed and the Majorana zero modes are braided/fused, reading out the parity of the chains is essential for further verifying the non-Abelian property of the Majorana zero modes. Here we demonstrate the feasibility of using a superconducting transmon qubit, which incorporates an end of a four-site quantum dot-superconductor chain based on a Ge/Si nanowire, to directly detect the singlet/doublet state, and thus the parity of the entire chain. We also demonstrate that for multiple-dot chains there are two types of 0-{\pi} transitions between different charging states: the parity-flip 0-{\pi} transition and the parity-preserved 0-{\pi} transition. Furthermore, we show that the inter-dot coupling, hence the strengths of cross Andreev reflection and elastic cotunneling of electrons, can be adjusted by local electrostatic gating in chains fabricated on Ge/Si core-shell nanowires. Our exploration would be helpful for the ultimate realization of topological quantum computing based on artificial Kitaev chains.
- Published
- 2025
27. Generative Multi-Form Bayesian Optimization
- Author
-
Guo, Zhendong, Liu, Haitao, Ong, Yew-Soon, Qu, Xinghua, Zhang, Yuzhe, and Zheng, Jianmin
- Subjects
Computer Science - Computational Engineering, Finance, and Science - Abstract
Many real-world problems, such as airfoil design, involve optimizing a black-box expensive objective function over complex structured input space (e.g., discrete space or non-Euclidean space). By mapping the complex structured input space into a latent space of dozens of variables, a two-stage procedure labeled as generative model based optimization (GMO) in this paper, shows promise in solving such problems. However, the latent dimension of GMO is hard to determine, which may trigger the conflicting issue between desirable solution accuracy and convergence rate. To address the above issue, we propose a multi-form GMO approach, namely generative multi-form optimization (GMFoO), which conducts optimization over multiple latent spaces simultaneously to complement each other. More specifically, we devise a generative model which promotes positive correlation between latent spaces to facilitate effective knowledge transfer in GMFoO. And further, by using Bayesian optimization (BO) as the optimizer, we propose two strategies to exchange information between these latent spaces continuously. Experimental results are presented on airfoil and corbel design problems and an area maximization problem as well to demonstrate that our proposed GMFoO converges to better designs on a limited computational budget.
- Published
- 2025
- Full Text
- View/download PDF
28. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
- Author
-
DeepSeek-AI, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, and Zhang, Zhen
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
- Published
- 2025
29. Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
- Author
-
Li, Yafu, Hu, Xuyang, Qu, Xiaoye, Li, Linjie, and Cheng, Yu
- Subjects
Computer Science - Computation and Language - Abstract
Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining. In this work, we introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference, removing the need to update model parameters. Rather than relying on purely numerical rewards, TPO translates reward signals into textual critiques and uses them as textual rewards to iteratively refine its response. Evaluations on benchmarks covering instruction following, preference alignment, safety, and mathematics reveal that TPO progressively improves alignment with human preferences. Notably, after only a few TPO steps, the initially unaligned Llama-3.1-70B-SFT model can surpass the aligned counterpart, Llama-3.1-70B-Instruct. Furthermore, TPO scales efficiently with both the search width and depth during inference. Through case studies, we illustrate how TPO exploits the innate capacity of LLM to interpret and act upon reward signals. Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly. Our code is publicly available at https://github.com/yafuly/TPO., Comment: 43 pages; work in progress
- Published
- 2025
30. Observation of the $\Lambda_b^0 \to J/\psi \Xi^- K^+$ and $\Xi_b^0 \to J/\psi \Xi^- \pi^+$ decays
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Balboni, A., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bonacci, R. B., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bottalico, E., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Brandenburg, J. D., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonincontri, L., Marcos, M. Burgos, Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collaviti, S., Collins, P., Colombo, T., Colonna, M., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Darze, G., Davidson, A., Davies, J. E., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Firlej, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fiutowski, T., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Gardner, P., Garg, K. G., Garrido, L., Gaspar, C., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golinka-Bezshyyko, L., Golobardes, E., Golubkov, D., Golutvin, A., Fernandez, S. Gomez, Gomulka, W., Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Govorkova, E., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Harris, T. H., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Idzik, M., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, M., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Linton, H., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Ordonez, G. Loachamin, Salvia, A. Lobo, Loi, A., Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manganella, F. M., Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Gomez, D. Martinez, Santos, D. Martinez, Vidal, F. Martinez, Granollers, A. Martorell i, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Moeser, L., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Moron, J., Morren, W., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Niu, Q., Nogarolli, P., Nogga, P., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Pan, X., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Parmar, D., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perrevoort, A., Perro, A., Peters, M. J., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Piccolo, L., Pietrzyk, B., Pietrzyk, G., Pilato, R. N., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Galvez, M. Ribalda, Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Alvarez, A. Rodriguez, Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Segal, I., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Sommerfeld, N. S., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stefaniak, M., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swientek, K., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tang, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Tork, T., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Urbach, B., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, van Eldik, J., Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Verdoglia, M., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, H., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Y. W., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. J., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Winn, M., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, X., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xing, T. X., Xu, A., Xu, L., Xu, M., Xu, Z., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhang, Z., Zhao, Y., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment - Abstract
The first observation of the $\Xi_b^0 \to J/\psi \Xi^- \pi^+$ decay and the most precise measurement of the branching fraction of the $\Lambda_b^0 \to J/\psi \Xi^- K^+$ decay are reported, using proton-proton collision data from the LHCb experiment collected in 2016--2018 at a centre-of-mass energy of 13~TeV, corresponding to an integrated luminosity of 5.4~fb$^{-1}$. Using the $\Lambda_b^0 \to J/\psi \Lambda$ and $\Xi_b^0 \to J/\psi \Xi^-$ decays as normalisation channels, the ratios of branching fractions are measured to be: \[ \frac{\mathcal{B}(\Lambda_b^0 \to J/\psi \Xi^- K^+)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = (1.17 \pm 0.14 \pm 0.08)\times 10^{-2} \, , \] \[ \frac{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^- \pi^+)}{\mathcal{B}(\Xi_b^0 \to J/\psi \Xi^-)} = (11.9 \pm 1.4 \pm 0.6)\times 10^{-2}\, , \] where the first uncertainty is statistical and the second systematic., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3479/ (LHCb public pages)
- Published
- 2025
31. Measurement of the multiplicity dependence of $\mit\Upsilon$ production ratios in $pp$ collisions at $\sqrt{s}=13$ TeV
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Balboni, A., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartolini, M., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bonacci, R. B., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonaura, A., Buonincontri, L., Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A. C., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cervenkov, D., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Cholak, S., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collaviti, S., Collins, P., Colombo, T., Colonna, M., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Darze, G., Davidson, A., Davies, J. E., Davis, A., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Firlej, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fiutowski, T., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Gardner, P., Garg, K. G., Garrido, L., Gaspar, C., Geertsema, R. E., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Gironell, P. Gironella, Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golobardes, E., Golubkov, D., Golutvin, A., Fernandez, S. Gomez, Gomulka, W., Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guittiere, M., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Hajheidari, M., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Harris, T. H., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Idzik, M., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, M., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Linton, H., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Salvia, A. Lobo, Loi, A., Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Majewski, M. W., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manganella, F. M., Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Gomez, D. Martinez, Santos, D. Martinez, Vidal, F. Martinez, Granollers, A. Martorell i, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., Mcconnell, L., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Moron, J., Morren, W., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Niu, Q., Nogarolli, P., Nogga, P., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Pan, X., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Parmar, D., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perrevoort, A., Perro, A., Peters, M. J., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Piccolo, L., Pietrzyk, B., Pietrzyk, G., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Alvarez, A. Rodriguez, Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzhikov, A., Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Segal, I., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Sommerfeld, N. S., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swientek, K., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tang, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Urbach, B., Ursov, E., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Verdoglia, M., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, H., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Y. W., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. J., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Winn, M., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, X., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xu, A., Xu, J., Xu, L., Xu, M., Xu, Z., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhao, Y., Zharkova, A., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The $\mit{\Upsilon}(\mathrm{2}S)$ and $\mit{\Upsilon}(\mathrm{3}S)$ production cross-sections are measured relative to that of the $\mit{\Upsilon}(\mathrm{1}S)$ meson, as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of $13$ TeV. The measurement uses data collected by the LHCb experiment in 2018 corresponding to an integrated luminosity of 2 $\text{fb}^{-1}$. Both the $\mit{\Upsilon}(\mathrm{2}S)$-to-$\mit{\Upsilon}(\mathrm{1}S)$ and $\mit{\Upsilon}(\mathrm{3}S)$-to-$\mit{\Upsilon}(\mathrm{1}S)$ cross-section ratios are found to decrease significantly as a function of event multiplicity, with the $\mit{\Upsilon}(\mathrm{3}S)$-to-$\mit{\Upsilon}(\mathrm{1}S)$ ratio showing a steeper decline towards high multiplicity. This hierarchy is qualitatively consistent with the comover model predictions, indicating that final-state interactions play an important role in bottomonia production in high-multiplicity events., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/1782/ (LHCb public pages)
- Published
- 2025
32. Search for charge-parity violation in semileptonically tagged $D^{0} \to K^{+} \pi^{-}$ decays
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Balboni, A., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bonacci, R. B., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bottalico, E., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Brandenburg, J. D., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonincontri, L., Marcos, M. Burgos, Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collaviti, S., Collins, P., Colombo, T., Colonna, M., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Darze, G., Davidson, A., Davies, J. E., Davis, A., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Firlej, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fiutowski, T., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Gardner, P., Garg, K. G., Garrido, L., Gaspar, C., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golobardes, E., Golubkov, D., Golutvin, A., Fernandez, S. Gomez, Gomulka, W., Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Govorkova, E., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Harris, T. H., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Idzik, M., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, M., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Linton, H., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Ordonez, G. Loachamin, Salvia, A. Lobo, Loi, A., Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Majewski, M. W., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manganella, F. M., Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Gomez, D. Martinez, Santos, D. Martinez, Vidal, F. Martinez, Granollers, A. Martorell i, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., Mcconnell, L., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Moron, J., Morren, W., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Niu, Q., Nogarolli, P., Nogga, P., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Pan, X., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Parmar, D., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perrevoort, A., Perro, A., Peters, M. J., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Piccolo, L., Pietrzyk, B., Pietrzyk, G., Pilato, R. N., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Alvarez, A. Rodriguez, Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzhikov, A., Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Segal, I., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Sommerfeld, N. S., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stefaniak, M., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swientek, K., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tang, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Tork, T., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Urbach, B., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, van Eldik, J., Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Verdoglia, M., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, H., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Y. W., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. J., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Winn, M., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, X., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xing, T. X., Xu, A., Xu, L., Xu, M., Xu, Z., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhang, Z., Zhao, Y., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment - Abstract
An analysis of the flavour oscillations of the charmed neutral meson is presented. The ratio of $D^{0} \to K^{+} \pi^{-}$ and $D^{0} \to K^{-} \pi^{+}$ decay rates is measured as a function of the decay time of the $D^{0}$ meson and compared with the charge-conjugated system to search for charge-parity violation. The meson flavour at production is double-tagged by the charges of the muon and pion in the preceding $\overline{B} \to D^{*}(2010)^{+} \mu^{-} X$ and ${{D^{*}(2010)^{+}} \to D^{0}\pi^{+}}$ decays, respectively. These decays are selected from proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of ${13\,\text{TeV}}$ and corresponding to an integrated luminosity of ${5.4\,\text{fb}^{-1}}$. The flavour oscillation parameters, relating to the differences in mass and width of the mass eigenstates, are found to be ${y^\prime=(5.8\pm1.6)\times10^{-3}}$ and ${(x^\prime)^2=(0.0\pm1.2)\times10^{-4}}$. No evidence for charge-parity violation is seen either in the flavour oscillations or in the decay, where the direct charge-parity asymmetry is measured to be ${A_{D}=(2.3\pm1.7)\,{\%}}$., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3260/ (LHCb public pages)
- Published
- 2025
33. Beyond Any-Shot Adaptation: Predicting Optimization Outcome for Robustness Gains without Extra Pay
- Author
-
Wang, Qi Cheems, Xiao, Zehao, Mao, Yixiu, Qu, Yun, Shen, Jiayi, Lv, Yiqin, and Ji, Xiangyang
- Subjects
Computer Science - Machine Learning - Abstract
The foundation model enables fast problem-solving without learning from scratch, and such a desirable adaptation property benefits from its adopted cross-task generalization paradigms, e.g., pretraining, meta-training, or finetuning. Recent trends have focused on the curation of task datasets during optimization, which includes task selection as an indispensable consideration for either adaptation robustness or sampling efficiency purposes. Despite some progress, selecting crucial task batches to optimize over iteration mostly exhausts massive task queries and requires intensive evaluation and computations to secure robust adaptation. This work underscores the criticality of both robustness and learning efficiency, especially in scenarios where tasks are risky to collect or costly to evaluate. To this end, we present Model Predictive Task Sampling (MPTS), a novel active task sampling framework to establish connections between the task space and adaptation risk landscape achieve robust adaptation. Technically, MPTS characterizes the task episodic information with a generative model and predicts optimization outcome after adaptation from posterior inference, i.e., forecasting task-specific adaptation risk values. The resulting risk learner amortizes expensive annotation, evaluation, or computation operations in task robust adaptation learning paradigms. Extensive experimental results show that MPTS can be seamlessly integrated into zero-shot, few-shot, and many-shot learning paradigms, increases adaptation robustness, and retains learning efficiency without affording extra cost. The code will be available at the project site https://github.com/thu-rllab/MPTS.
- Published
- 2025
34. A Survey on Multi-Turn Interaction Capabilities of Large Language Models
- Author
-
Zhang, Chen, Dai, Xinyi, Wu, Yaxiong, Yang, Qu, Wang, Yasheng, Tang, Ruiming, and Liu, Yong
- Subjects
Computer Science - Computation and Language - Abstract
Multi-turn interaction in the dialogue system research refers to a system's ability to maintain context across multiple dialogue turns, enabling it to generate coherent and contextually relevant responses. Recent advancements in large language models (LLMs) have significantly expanded the scope of multi-turn interaction, moving beyond chatbots to enable more dynamic agentic interactions with users or environments. In this paper, we provide a focused review of the multi-turn capabilities of LLMs, which are critical for a wide range of downstream applications, including conversational search and recommendation, consultation services, and interactive tutoring. This survey explores four key aspects: (1) the core model capabilities that contribute to effective multi-turn interaction, (2) how multi-turn interaction is evaluated in current practice, (3) the general algorithms used to enhance multi-turn interaction, and (4) potential future directions for research in this field., Comment: Draft Version, 14 pages, Ongoing refinement over time
- Published
- 2025
35. Photonic chiral state transfer near the Liouvillian exceptional point
- Author
-
Gao, Huixia, Sun, Konghao, Qu, Dengke, Wang, Kunkun, Xiao, Lei, Yi, Wei, and Xue, Peng
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum Physics - Abstract
As branch-point singularities of non-Hermitian matrices, the exceptional points (EPs) exhibit unique spectral topology and criticality, with intriguing dynamic consequences in non-Hermitian settings. In open quantum systems, EPs also emerge in the Liouvillian spectrum, but their dynamic impact often pertains to the transient dynamics and is challenging to demonstrate. Here, using the flexible control afforded by single-photon interferometry, we study the chiral state transfer when the Liouvillian EP is parametrically encircled. Reconstructing the density-matrix evolution by experimentally simulating the quantum Langevin equation, we show that the chirality of the dynamics is only present within an intermediate encircling timescale and dictated by the landscape of the Liouvillian spectrum near the EP. However, the chirality disappears at long times as the system always relaxes to the steady state. We then demonstrate the universal scaling of the chirality with respect to the encircling time. Our experiment confirms the transient nature of chiral state transfer near a Liouvillian EP in open quantum systems, while our scheme paves the way for simulating general open-system dynamics using single photons., Comment: 6 pages, 4 figures
- Published
- 2025
36. Study of $\eta\rightarrow\pi^+\pi^-l^+l^-$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Che, Y. Z., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Chu, X., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y., Gao, Y. N., Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Y. S., Hussain, T., Hölzken, F., Hüsken, N., der Wiesche, N. in, Jackson, J., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Lavania, A., Lavezzi, L., Lei, T. T., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, K., Li, K. L., Li, L. J., Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Y., Li, X. Z., Li, Y. G., Li, Z. J., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F., Liu, F. H., Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. H., Liu, H. M., Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, L. R., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Malik, Q. A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, M. Q., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, S. S, Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, J. J., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, L. W., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y., Xu, Y. C., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, W. H., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, J. H., Yang, T., Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., Yin, Junhao, You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, M. C., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y., Zhang, S. H., Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y, Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using a sample of $(10087\pm44)\times10^{6}$ $J/\psi$ events accumulated with the BESIII detector, we analyze the decays $\eta\rightarrow\pi^+\pi^-l^+l^-$ ($l=e$ or $\mu$) via the process $J/\psi\rightarrow\gamma\eta$. The branching fraction of $\eta\rightarrow\pi^+\pi^-e^+e^-$ is measured to be $\mathcal{B}(\eta\rightarrow\pi^+\pi^-e^+e^-)=(3.07\pm0.12_{\rm{stat.}}\pm0.19_{\rm{syst.}}) \times10^{-4}$. No signal events are observed for the $\eta\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-}$ decay, leading to an upper limit on the branching fraction of $\mathcal{B}(\eta\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-})<4.0\times10^{-7}$ at the 90\% confidence level. Furthermore, the $CP$-violation asymmetry parameter is found to be $\mathcal{A}_{CP}(\eta\rightarrow\pi^{+}\pi^{-}e^{+}e^{-})=(-4.04\pm4.69_{\rm{stat.}}\pm0.14_{\rm{syst.}})\%$, showing no evidence of $CP$-violation with current statistics. Additionally, we extract the transition form factor from the decay amplitude of $\eta\rightarrow\pi^+\pi^-e^+e^-$. Finally, axion-like particles are searched for via the decay $\eta\rightarrow\pi^+\pi^-a, a\rightarrow e^+e^-$, and upper limits on this branching fraction relative to that of $\eta\rightarrow\pi^+\pi^-e^+e^-$ are presented as a function of the axion-like particle mass in the range $5-200\ \mathrm{MeV}/c^{2}$.
- Published
- 2025
37. IE-Bench: Advancing the Measurement of Text-Driven Image Editing for Human Perception Alignment
- Author
-
Sun, Shangkun, Qu, Bowen, Liang, Xiaoyu, Fan, Songlin, and Gao, Wei
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Recent advances in text-driven image editing have been significant, yet the task of accurately evaluating these edited images continues to pose a considerable challenge. Different from the assessment of text-driven image generation, text-driven image editing is characterized by simultaneously conditioning on both text and a source image. The edited images often retain an intrinsic connection to the original image, which dynamically change with the semantics of the text. However, previous methods tend to solely focus on text-image alignment or have not aligned with human perception. In this work, we introduce the Text-driven Image Editing Benchmark suite (IE-Bench) to enhance the assessment of text-driven edited images. IE-Bench includes a database contains diverse source images, various editing prompts and the corresponding results different editing methods, and total 3,010 Mean Opinion Scores (MOS) provided by 25 human subjects. Furthermore, we introduce IE-QA, a multi-modality source-aware quality assessment method for text-driven image editing. To the best of our knowledge, IE-Bench offers the first IQA dataset and model tailored for text-driven image editing. Extensive experiments demonstrate IE-QA's superior subjective-alignments on the text-driven image editing task compared with previous metrics. We will make all related data and code available to the public.
- Published
- 2025
38. Berezinskii-Kosterlitz-Thouless region and magnetization plateaus in easy-axis triangular weak-dimer antiferromagnet K$_2$Co$_2$(SeO$_3$)$_3$
- Author
-
Fu, Ying, Ge, Han, Chen, Jian, Xiao, Jie, Tan, Yi, Wang, Le, Wang, Junfeng, Dong, Chao, Qu, Zhe, He, Miao, Xi, Chuanying, Ling, Langsheng, Xi, Bin, and Mei, Jia-Wei
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
We investigate the magnetic phase diagram of the bilayer triangular antiferromagnet K$_2$Co$_2$(SeO$_3$)$_3$, revealing a rich interplay among geometric frustration, bilayer coupling, and symmetry-driven phenomena. High-field magnetization measurements show fractional magnetization plateaus at 1/3, 1/2, 2/3, and 5/6 of the saturation magnetization. To elucidate the experimental magnetic phase diagram at low fields, we propose that K$_2$Co$_2$(SeO$_3$)$_3$ can be described as an easy-axis triangular weak-dimer antiferromagnet. We emphasize the critical role of the emergent $U(1) \otimes S_3$ symmetry, where $S_3 = \mathbb{Z}_3 \otimes \mathbb{Z}_2^d$, in determining the magnetic phases at low fields. The remarkable agreement between the experimental and theoretical phase diagrams suggests that the phase transitions are governed by this symmetry. Notably, our combined experimental and theoretical results identify a Berezinskii-Kosterlitz-Thouless (BKT) phase region at finite fields. These findings provide new insights into the phase structure of frustrated magnets and establish K$_2$Co$_2$(SeO$_3$)$_3$ as a compelling platform for exploring unconventional quantum phenomena in $U(1) \otimes S_3$ systems., Comment: 6 pages, 4 figures. Supplementary material is included in source file. Typos fixed
- Published
- 2025
39. AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling
- Author
-
Xu, Ancheng, Yang, Di, Li, Renhao, Zhu, Jingwei, Tan, Minghuan, Yang, Min, Qiu, Wanxin, Ma, Mingchen, Wu, Haihong, Li, Bingyu, Sha, Feng, Li, Chengming, Hu, Xiping, Qu, Qiang, Wong, Derek F., and Xu, Ruifeng
- Subjects
Computer Science - Computation and Language - Abstract
Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues, while online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame. Cognitive Behavioral Therapy (CBT) is an essential and widely used approach in psychological counseling. The advent of large language models (LLMs) and agent technology enables automatic CBT diagnosis and treatment. However, current LLM-based CBT systems use agents with a fixed structure, limiting their self-optimization capabilities, or providing hollow, unhelpful suggestions due to redundant response patterns. In this work, we utilize Quora-like and YiXinLi single-round consultation models to build a general agent framework that generates high-quality responses for single-turn psychological consultation scenarios. We use a bilingual dataset to evaluate the quality of single-response consultations generated by each framework. Then, we incorporate dynamic routing and supervisory mechanisms inspired by real psychological counseling to construct a CBT-oriented autonomous multi-agent framework, demonstrating its general applicability. Experimental results indicate that AutoCBT can provide higher-quality automated psychological counseling services.
- Published
- 2025
40. Aligning Instruction Tuning with Pre-training
- Author
-
Liang, Yiming, Zheng, Tianyu, Du, Xinrun, Zhang, Ge, Liu, Jiaheng, Qu, Xingwei, Zu, Wenqiang, Xing, Xingrun, Zheng, Chujie, Ma, Lei, Chen, Wenhu, Wang, Guoyin, Zhang, Zhaoxiang, Huang, Wenhao, Yue, Xiang, and Zhang, Jiajun
- Subjects
Computer Science - Artificial Intelligence - Abstract
Instruction tuning enhances large language models (LLMs) to follow human instructions across diverse tasks, relying on high-quality datasets to guide behavior. However, these datasets, whether manually curated or synthetically generated, are often narrowly focused and misaligned with the broad distributions captured during pre-training, limiting LLM generalization and effective use of pre-trained knowledge. We propose Aligning Instruction Tuning with Pre-training (AITP), a method that bridges this gap by identifying coverage shortfalls in instruction-tuning datasets and rewriting underrepresented pre-training data into high-quality instruction-response pairs. This approach enriches dataset diversity while preserving task-specific objectives. Evaluations on three fully open LLMs across eight benchmarks demonstrate consistent performance improvements with AITP. Ablations highlight the benefits of adaptive data selection, controlled rewriting, and balanced integration, emphasizing the importance of aligning instruction tuning with pre-training distributions to unlock the full potential of LLMs., Comment: arXiv admin note: text overlap with arXiv:hep-ph/9811436 by other authors
- Published
- 2025
41. Absence of diode effect in chiral type-I superconductor NbGe2
- Author
-
Li, Dong, Lu, Zouyouwei, Cheng, Wenxin, Shi, Xiaofan, Hu, Lihong, Ma, Xiaoping, Liu, Yue, Itahashi, Yuki M., Shitaokoshi, Takashi, Li, Peiling, Zhang, Hua, Liu, Ziyi, Qu, Fanming, Shen, Jie, Chen, Qihong, Jin, Kui, Cheng, Jinguang, Hänisch, Jens, Yang, Huaixin, Liu, Guangtong, Lu, Li, Dong, Xiaoli, Iwasa, Yoshihiro, and Hu, Jiangping
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Symmetry elegantly governs the fundamental properties and derived functionalities of condensed matter. For instance, realizing the superconducting diode effect (SDE) demands breaking space-inversion and time-reversal symmetries simultaneously. Although the SDE is widely observed in various platforms, its underlying mechanism remains debated, particularly regarding the role of vortices. Here, we systematically investigate the nonreciprocal transport in the chiral type-I superconductor NbGe2. Moreover, we induce type-II superconductivity with elevated superconducting critical temperature on the artificial surface by focused ion beam irradiation, enabling control over vortex dynamics in NbGe2 devices. Strikingly, we observe negligible diode efficiency (Q < 2%) at low magnetic fields, which rises significantly to Q ~ 50% at high magnetic fields, coinciding with an abrupt increase in vortex creep rate when the superconductivity of NbGe2 bulk is suppressed. These results unambiguously highlight the critical role of vortex dynamics in the SDE, in addition to the established symmetry rules.
- Published
- 2025
42. Interpretable Droplet Digital PCR Assay for Trustworthy Molecular Diagnostics
- Author
-
Wei, Yuanyuan, Wu, Yucheng, Qu, Fuyang, Mu, Yao, Ho, Yi-Ping, Ho, Ho-Pui, Yuan, Wu, and Xu, Mingkun
- Subjects
Quantitative Biology - Quantitative Methods ,Computer Science - Artificial Intelligence - Abstract
Accurate molecular quantification is essential for advancing research and diagnostics in fields such as infectious diseases, cancer biology, and genetic disorders. Droplet digital PCR (ddPCR) has emerged as a gold standard for achieving absolute quantification. While computational ddPCR technologies have advanced significantly, achieving automatic interpretation and consistent adaptability across diverse operational environments remains a challenge. To address these limitations, we introduce the intelligent interpretable droplet digital PCR (I2ddPCR) assay, a comprehensive framework integrating front-end predictive models (for droplet segmentation and classification) with GPT-4o multimodal large language model (MLLM, for context-aware explanations and recommendations) to automate and enhance ddPCR image analysis. This approach surpasses the state-of-the-art models, affording 99.05% accuracy in processing complex ddPCR images containing over 300 droplets per image with varying signal-to-noise ratios (SNRs). By combining specialized neural networks and large language models, the I2ddPCR assay offers a robust and adaptable solution for absolute molecular quantification, achieving a sensitivity capable of detecting low-abundance targets as low as 90.32 copies/{\mu}L. Furthermore, it improves model's transparency through detailed explanation and troubleshooting guidance, empowering users to make informed decisions. This innovative framework has the potential to benefit molecular diagnostics, disease research, and clinical applications, especially in resource-constrained settings.
- Published
- 2025
43. Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection
- Author
-
Cheng, Qisen, Qu, Shuhui, and Lee, Janghwan
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Unsupervised visual defect detection is critical in industrial applications, requiring a representation space that captures normal data features while detecting deviations. Achieving a balance between expressiveness and compactness is challenging; an overly expressive space risks inefficiency and mode collapse, impairing detection accuracy. We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection. Our model introduces a patch-aware dynamic code assignment scheme, enabling context-sensitive code allocation to optimize spatial representation. This strategy enhances normal-defect distinction and improves detection accuracy during inference. Experiments on MVTecAD, BTAD, and MTSD datasets show our method achieves state-of-the-art performance., Comment: 7 pages, Accepted to 36th IEEE ICTAI 2024
- Published
- 2025
44. Data-driven inventory management for new products: A warm-start and adjusted Dyna-$Q$ approach
- Author
-
Qu, Xinye, Liu, Longxiao, and Huang, Wenjie
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computational Engineering, Finance, and Science - Abstract
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no or limited historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-based and model-free approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7% reduction in average daily cost compared with $Q$-learning, and up to a 77.5% reduction in training time within the same horizon compared with classic Dyna-$Q$. By incorporating the warm-start information, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the algorithms under a 30-day testing., Comment: 7 pages, 2 figures
- Published
- 2025
45. Search for the FCNC charmonium decay $J/\psi \to D^0 \mu^+ \mu^- + \text{c.c.}$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, M. H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chai, X. Y., Chang, J. F., Che, G. R., Che, Y. Z., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. K., Choi, S. K., Chu, X., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Ding, Y. X., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, G. F., Fan, J. J., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Y. Y., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, J. D., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, K. D., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, Q. P., Hu, S. L., Hu, T., Hu, Y., Hu, Z. M., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, P., Huang, X. T., Huang, Y. P., Huang, Y. S., Hussain, T., Hüsken, N., der Wiesche, N. in, Jackson, J., Janchiv, S., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. J., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lan, Q., Lan, W. N., Lei, T. T., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, C. K., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, K., Li, K. L., Li, L. J., Li, Lei, Li, M. H., Li, M. R., Li, P. L., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, T., Li, T. Y., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Y., Li, X. Z., Li, Y., Li, Y. G., Li, Y. P., Li, Z. J., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. B., Liao, M. H., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, C. X., Lin, D. X., Lin, L. Q., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F., Liu, F. H., Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. H., Liu, H. M., Liu, Huihui, Liu, J. B., Liu, J. J., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, W. T., Liu, X., Liu, X. Y., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, Y., Lu, Y. H., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, J. S., Luo, M. X., Luo, T., Luo, X. L., Lv, Z. Y., Lyu, X. R., Lyu, Y. F., Lyu, Y. H., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, L. R., Ma, Q. M., Ma, R. Q., Ma, R. Y., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y. M., Maas, F. E., MacKay, I., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Melendi, F. M., Meng, Y. H., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H. R., Qi, M., Qian, S., Qian, W. B., Qiao, C. F., Qiao, J. H., Qin, J. J., Qin, J. L., Qin, L. Q., Qin, L. Y., Qin, P. B., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Rivetti, A., Rolo, M., Rong, G., Rong, S. S., Rosini, F., Rosner, Ch., Ruan, M. Q., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, J. L., Shi, J. Y., Shi, S. Y., Shi, X., Song, H. L., Song, J. J., Song, T. Z., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, S. S, Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, Y. C., Sun, Y. H., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, L. F., Tang, M., Tang, Y. A., Tao, L. Y., Tat, M., Teng, J. X., Tian, J. Y., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, B., Wang, Bo, Wang, C., Wang, Cong, Wang, D. Y., Wang, H. J., Wang, J. J., Wang, K., Wang, L. L., Wang, L. W., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Yuan, Wang, Z., Wang, Z. L., Wang, Z. Q., Wang, Z. Y., Wei, D. H., Wei, H. R., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, Lianjie, Wu, S. G., Wu, S. M., Wu, X., Wu, X. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, H., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, K. J., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W. L., Xu, X. P., Xu, Y., Xu, Y. C., Xu, Z. S., Yan, H. Y., Yan, L., Yan, W. B., Yan, W. C., Yan, W. P., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, J. H., Yang, R. J., Yang, T., Yang, Y., Yang, Y. F., Yang, Y. H., Yang, Y. Q., Yang, Y. X., Yang, Y. Z., Ye, M., Ye, M. H., Yin, Junhao, You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, M. C., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, H., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Yue, Ying, Zafar, A. A., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, N., Zhang, P., Zhang, Q., Zhang, Q. Y., Zhang, R. Y., Zhang, S. H., Zhang, Shulei, Zhang, X. M., Zhang, X. Y, Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. X., Zhang, Z. Y., Zhang, Z. Z., Zhang, Zh. Zh., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, Lei, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. L., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, X. R., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Q., Zhou, J. Y., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhou, Z. C., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, T. J., Zhu, W. D., Zhu, W. J., Zhu, W. Z., Zhu, Y. C., Zhu, Z. A., Zhuang, X. Y., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Based on a data sample of $(10087 \pm 44) \times 10^6$ $J/\psi$ events taken with the BESIII detector, we search for the flavor-changing neutral current charmonium decay $J/\psi \to D^{0} \mu^{+} \mu^{-} + \text{c.c.}$. No significant signal above the background is observed, and the upper limit on its branching fraction is set to be $\mathcal{B}(J/\psi \to D^{0}\mu^{+}\mu^{-} + \text{c.c.} ) < 1.1 \times 10^{-7}$ at the 90% confidence level. This marks the first search for a flavor-changing neutral current charmonium decay involving muons in the final state., Comment: 20 pages, 4 figures
- Published
- 2025
46. Quantum Direct Steganography Scheme Based on Modified Generator Projection Directions of Steane Code over a Single-Type Pauli Channel
- Author
-
Hao, Chaolong, Ma, Quangong, Qu, Dan, and Shi, Dawei
- Subjects
Quantum Physics - Abstract
In quantum mechanics, measurements of a quantum state in various directions yield distinct outcomes, a principle that forms the foundation of quantum communication theory. This paper expands upon this concept by introducing a method to modify generator projection directions (MGPD) within quantum stabilizer codes. Employing the Steane code ($(7,1,3)$ code), as a fundamental carrier, we develop a novel scheme for direct quantum steganography across a single-type Pauli channel. The infeasibility of eavesdropping decoding under MGPD is proven. We detail the steganographic encoding and decoding schemes, corresponding quantum circuits, and eavesdropping detection principles. We also use a 'Sudoku'-style strategy to balance steganographic error probabilities and provide the complete steganography protocol. Relative to existing studies, the MGPD method achieves embedding rates approaching and attaining the upper limit of the information capacity for the $(n,k,d)=(7,1,3)$ code within a noise probability range of approximately $1/(n+1)=12.5\%$. It also reduces the consumption of auxiliary keys from $O(\log{(N)})$ to $O(1)$, while enabling eavesdropping detection and steganography of arbitrary quantum states. We investigate its potential applications in quantum communication and assess its benefits in the context of secret information transmission and eavesdropping detection in noisy channels. Although the MGPD method incorporates certain idealized assumptions and limitations, it provides novel perspectives on the concealment of quantum information.
- Published
- 2025
47. FlowDAS: A Flow-Based Framework for Data Assimilation
- Author
-
Chen, Siyi, Jia, Yixuan, Qu, Qing, Sun, He, and Fessler, Jeffrey A
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Data assimilation (DA) is crucial for improving the accuracy of state estimation in complex dynamical systems by integrating observational data with physical models. Traditional solutions rely on either pure model-driven approaches, such as Bayesian filters that struggle with nonlinearity, or data-driven methods using deep learning priors, which often lack generalizability and physical interpretability. Recently, score-based DA methods have been introduced, focusing on learning prior distributions but neglecting explicit state transition dynamics, leading to limited accuracy improvements. To tackle the challenge, we introduce FlowDAS, a novel generative model-based framework using the stochastic interpolants to unify the learning of state transition dynamics and generative priors. FlowDAS achieves stable and observation-consistent inference by initializing from proximal previous states, mitigating the instability seen in score-based methods. Our extensive experiments demonstrate FlowDAS's superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid super-resolution tasks. FlowDAS also demonstrates improved tracking accuracy on practical Particle Image Velocimetry (PIV) task, showcasing its effectiveness in complex flow field reconstruction.
- Published
- 2025
48. A Low-cost and Ultra-lightweight Binary Neural Network for Traffic Signal Recognition
- Author
-
Xiao, Mingke, Su, Yue, Yu, Liang, Qu, Guanglong, Jia, Yutong, Chang, Yukuan, and Zhang, Xu
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
The deployment of neural networks in vehicle platforms and wearable Artificial Intelligence-of-Things (AIOT) scenarios has become a research area that has attracted much attention. With the continuous evolution of deep learning technology, many image classification models are committed to improving recognition accuracy, but this is often accompanied by problems such as large model resource usage, complex structure, and high power consumption, which makes it challenging to deploy on resource-constrained platforms. Herein, we propose an ultra-lightweight binary neural network (BNN) model designed for hardware deployment, and conduct image classification research based on the German Traffic Sign Recognition Benchmark (GTSRB) dataset. In addition, we also verify it on the Chinese Traffic Sign (CTS) and Belgian Traffic Sign (BTS) datasets. The proposed model shows excellent recognition performance with an accuracy of up to 97.64%, making it one of the best performing BNN models in the GTSRB dataset. Compared with the full-precision model, the accuracy loss is controlled within 1%, and the parameter storage overhead of the model is only 10% of that of the full-precision model. More importantly, our network model only relies on logical operations and low-bit width fixed-point addition and subtraction operations during the inference phase, which greatly simplifies the design complexity of the processing element (PE). Our research shows the great potential of BNN in the hardware deployment of computer vision models, especially in the field of computer vision tasks related to autonomous driving.
- Published
- 2025
49. Maximum likelihood estimation in the sparse Rasch model
- Author
-
Peng, Pai, Qu, Lianqiang, Wang, Qiuping, Wang, Shufang, and Yan, Ting
- Subjects
Mathematics - Statistics Theory - Abstract
The Rasch model has been widely used to analyse item response data in psychometrics and educational assessments. When the number of individuals and items are large, it may be impractical to provide all possible responses. It is desirable to study sparse item response experiments. Here, we propose to use the Erd\H{o}s\textendash R\'enyi random sampling design, where an individual responds to an item with low probability $p$. We prove the uniform consistency of the maximum likelihood estimator %by developing a leave-one-out method for the Rasch model when both the number of individuals, $r$, and the number of items, $t$, approach infinity. Sampling probability $p$ can be as small as $\max\{\log r/r, \log t/t\}$ up to a constant factor, which is a fundamental requirement to guarantee the connection of the sampling graph by the theory of the Erd\H{o}s\textendash R\'enyi graph. The key technique behind this significant advancement is a powerful leave-one-out method for the Rasch model. We further establish the asymptotical normality of the MLE by using a simple matrix to approximate the inverse of the Fisher information matrix. The theoretical results are corroborated by simulation studies and an analysis of a large item-response dataset., Comment: 32 pages, 3 figures
- Published
- 2025
50. Knowledge Phenomenology Research of Future Industrial Iconic Product Innovation
- Author
-
Xu, Jiang and Qu, Haoxiang
- Subjects
Economics - Theoretical Economics - Abstract
Iconic products, as innovative carriers supporting the development of future industries, are key breakthrough points for driving the transformation of new quality productive forces. This article is grounded in the philosophy of technology and examines the evolution of human civilization to accurately identify the patterns of product innovation. By integrating theories from systems science, it analyzes the intrinsic logical differences between traditional products and iconic products. The study finds that iconic products are based on a comprehensive knowledge system that integrates explicit and tacit knowledge, enabling them to adapt to complex dynamic environments. Therefore, based on the method of phenomenological essence reduction and the process of specialized knowledge acquisition, this study establishes the first principle of knowledge phenomenology: "knowledge generation-moving from the tacit to the explicit-moving from the explicit to the tacit-fusion of the explicit and tacit." Grounded in knowledge phenomenology, it reconstructs the product design evolution process and establishes a forward innovative design framework for iconic products, consisting of "design problem space-explicit knowledge space-tacit knowledge space-innovative solution space." Furthermore, based on FBS design theory, it develops a disruptive technology innovation forecasting framework of "technology problem space-knowledge base prediction-application scenario prediction-coupled technology prediction," which collectively advances the innovation systems engineering of iconic products. In light of the analysis of the global future industrial competitive landscape, it proposes a strategy for enhancing embodied intelligence in iconic products.
- Published
- 2025
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.