30 results on '"Amin Ghaith"'
Search Results
2. Skew Quadrupole Effect of Laser Plasma Electron Beam Transport
- Author
-
Driss Oumbarek Espinos, Amin Ghaith, Thomas André, Charles Kitégi, Mourad Sebdaoui, Alexandre Loulergue, Fabrice Marteau, Frédéric Blache, Mathieu Valléau, Marie Labat, Alain Lestrade, Eléonore Roussel, Cédric Thaury, Sébastien Corde, Guillaume Lambert, Olena Kononenko, Jean-Philippe Goddet, Amar Tafzi, Victor Malka, and Marie-Emmanuelle Couprie
- Subjects
laser plasma acceleration ,multipolar terms ,magnetism ,quadrupole ,electron beam transport ,free electron laser ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Laser plasma acceleration (LPA) capable of providing femtosecond and GeV electron beams in cm scale distances brings a high interest for different applications, such as free electron laser and future colliders. Nevertheless, LPA high divergence and energy spread require an initial strong focus to mitigate the chromatic effects. The reliability, in particular with the pointing fluctuations, sets a real challenge for the control of the dispersion along the electron beam transport. We examine here how the magnetic defects of the first strong quadrupoles, in particular, the skew terms, can affect the brightness of the transported electron beam, in the case of the COXINEL transport line, designed for manipulating the electron beam properties for a free electron laser application. We also show that the higher the initial beam divergence, the larger the degradation. Experimentally, after having implemented a beam pointing alignment compensation method enabling us to adjust the position and dispersion independently, we demonstrate that the presence of non-negligible skew quadrupolar components induces a transversal spread and tilt of the beam, leading to an emittance growth and brightness reduction. We are able to reproduce the measurements with beam transport simulations using the measured electron beam parameters.
- Published
- 2019
- Full Text
- View/download PDF
3. Permanent Magnet-Based Quadrupoles for Plasma Acceleration Sources
- Author
-
Amin Ghaith, Driss Oumbarek, Charles Kitégi, Mathieu Valléau, Fabrice Marteau, and Marie-Emmanuelle Couprie
- Subjects
quadrupoles ,permanent magnets ,laser plasma acceleration ,free electron laser ,Physics ,QC1-999 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
The laser plasma accelerator has shown a great promise where it uses plasma wakefields achieving gradients as high as GeV/cm. With such properties, one would be able to build much more compact accelerators, compared to the conventional RF ones, that could be used for a wide range of fundamental research and applied applications. However, the electron beam properties are quite different, in particular, the high divergence, leading to a significant growth of the emittance along the transport line. It is, thus, essential to mitigate it via a strong focusing of the electron beam to enable beam transport. High-gradient quadrupoles achieving a gradient greater than 100 T/m are key components for handling laser plasma accelerator beams. Permanent magnet technology can be used to build very compact quadrupoles capable of providing a very large gradient up to 500 T/m. We present different designs, modeled with a 3D magnetostatic code, of fixed and variable systems. We also review different quadrupoles that have already been built and one design is compared to measurements.
- Published
- 2019
- Full Text
- View/download PDF
4. Learning Electron Bunch Distribution along a FEL Beamline by Normalising Flows.
- Author
-
Anna Willmann, Jurjen Couperus Cabadag, Yen-Yu Chang, Richard Pausch, Amin Ghaith, Alexander Debus, Arie Irman, Michael Bussmann, Ulrich Schramm, and Nico Hoffmann
- Published
- 2023
- Full Text
- View/download PDF
5. Seeded free-electron laser driven by a compact laser plasma accelerator
- Author
-
Marie Labat, Jurjen Couperus Cabadağ, Amin Ghaith, Arie Irman, Anthony Berlioux, Philippe Berteaud, Frédéric Blache, Stefan Bock, François Bouvet, Fabien Briquez, Yen-Yu Chang, Sébastien Corde, Alexander Debus, Carlos De Oliveira, Jean-Pierre Duval, Yannick Dietrich, Moussa El Ajjouri, Christoph Eisenmann, Julien Gautier, René Gebhardt, Simon Grams, Uwe Helbig, Christian Herbeaux, Nicolas Hubert, Charles Kitegi, Olena Kononenko, Michael Kuntzsch, Maxwell LaBerge, Stéphane Lê, Bruno Leluan, Alexandre Loulergue, Victor Malka, Fabrice Marteau, Manh Huy N. Guyen, Driss Oumbarek-Espinos, Richard Pausch, Damien Pereira, Thomas Püschel, Jean-Paul Ricaud, Patrick Rommeluere, Eléonore Roussel, Pascal Rousseau, Susanne Schöbel, Mourad Sebdaoui, Klaus Steiniger, Keihan Tavakoli, Cédric Thaury, Patrick Ufer, Mathieu Valléau, Marc Vandenberghe, José Vétéran, Ulrich Schramm, Marie-Emmanuelle Couprie, Synchrotron SOLEIL [SSOLEIL], Helmholtz-Zentrum Dresden-Rossendorf [HZDR], Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM], Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institute of Radiation Physics [Dresden], Weizmann Institute of Science [Rehovot, Israël], DYnamique des Systèmes COmplexes (DYSCO), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), ANR-19-CE30-0031,ULTRASYNC,Exploration et contrôle ULTRArapide de la dynamique des paquets d'électrons dans les sources de lumière SYNChrotron(2019), European Project: 340015,EC:FP7:ERC,ERC-2013-ADG,COXINEL(2014), European Project: 653782,H2020,H2020-INFRADEV-1-2014-1,EuPRAXIA(2015), European Project: 339128,EC:FP7:ERC,ERC-2013-ADG,X-FIVE(2014), European Project: M-PAC, European Project: 871124, and The University of Texas at Austin
- Subjects
[PHYS]Physics [physics] ,seeded FEL driven by LPA beams ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,free electron laser ,laser plasma accelerator ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Abstract
Free-electron lasers generate high-brilliance coherent radiation at wavelengths spanning from the infrared to the X-ray domains. The recent development of short-wavelength seeded free-electron lasers now allows for unprecedented levels of control on longitudinal coherence[1], opening new scientific avenues as ultra-fast dynamics on complex systems and X-ray nonlinear optics. While those devices rely on state-of-the-art large-scale accelerators, advancements on laser-plasma accelerators, which harness giga-volt-per-centimeter accelerating fields, showcase a promising technology as compact drivers for free-electron lasers. Using such miniaturized accelerators, exponential amplification of a shot-noise type of radiation in a self-amplified spontaneous emission configuration was recently achieved [2]. However, employing this compact approach for the delivery of temporally coherent pulses in a controlled manner remained a major challenge. Here, we present the experimental demonstration of a laser-plasma accelerator driven free-electron laser in a seeded configuration, where control over the radiation wavelength is accomplished. Furthermore, the appearance of interference fringes, resulting from the interaction between the phase-locked emitted radiation and the seed, confirms longitudinal coherence. Building on our scientific achievements, we anticipate a straightforward scaling to extreme-ultraviolet wavelengths, paving the way towards university-scale free-electron lasers, unique tools for a multitude of applications. [1] Meyer, M. FELs of europe: Whitebook on science with free electron lasers 8–19 (2016). [2] Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator.
- Published
- 2023
- Full Text
- View/download PDF
6. Evaluating high resolution soil moisture maps in the framework of the ESA CCI
- Author
-
Madelon, Remi, primary, Bazzi, Hassan, additional, Amin, Ghaith, additional, Albergel, Clement, additional, Baghdadi, Nicolas, additional, Dorigo, Wouter, additional, Rodriguez-Fernandez, Nemesio, additional, and Zribi, Mehrez, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Can we detect the damage of a heatwave on vineyards using Sentinel-2 optical remote sensing data?
- Author
-
Pantaleoni Reluy, Núria, primary, Baghdadi, Nicolas, additional, Simonneau, Thierry, additional, Bazzi, Hassan, additional, El Hajj, Marcel, additional, Pret, Valentin, additional, Amin, Ghaith, additional, and Daret, Emilie, additional
- Published
- 2022
- Full Text
- View/download PDF
8. An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data
- Author
-
Bazzi, Hassan, primary, Baghdadi, Nicolas, additional, Amin, Ghaith, additional, Fayad, Ibrahim, additional, Zribi, Mehrez, additional, Demarez, Valérie, additional, and Belhouchette, Hatem, additional
- Published
- 2021
- Full Text
- View/download PDF
9. Undulator design for a laser-plasma-based free-electron-laser
- Author
-
Olivier Marcouillé, F. Massimo, Amin Ghaith, Axel Bernhard, Driss Oumbarek-Espinos, Federico Nguyen, S. Licciardi, A. Chancé, M. E. Couprie, M. Trunk, Giuseppe Dattoli, Igor Andriyash, Victor Malka, V. Bayliss, M. Courthold, Mathieu Valléau, J. A. Clarke, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Chirped pulse amplification ,Superconducting undulators ,Active laser medium ,Transverse gradient undulators ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,General Physics and Astronomy ,Synchrotron radiation ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Undulator radiation ,Optics ,law ,0103 physical sciences ,Cryogenic permanent magnet undulators ,010306 general physics ,Physics ,business.industry ,Free-electron laser ,Undulator ,Plasma acceleration ,Laser ,Beamline ,Laser plasma acceleration ,Physics::Accelerator Physics ,business ,Free electron laser - Abstract
International audience; The fourth generation of synchrotron radiation sources, commonly referred to as the Free Electron Laser (FEL), provides an intense source of brilliant X-ray beams enabling the investigation of matter at the atomic scale with unprecedented time resolution. These sources require the use of conventional linear accelerators providing high electron beam performance. The achievement of chirped pulse amplification allowing lasers to be operated at the Terawatt range, opened the way for the Laser Plasma Acceleration (LPA) technique where high energy electron bunches with high current can be produced within a very short centimeter-scale distance. Such an advanced acceleration concept is of great interest to be qualified by an FEL application for compact X-ray light sources. We explore in this paper what the LPA specificities imply on the design of the undulator, part of the gain medium. First, the LPA concept and state-of-art are presented showing the different operation regimes and what electron beam parameters are likely to be achieved. The LPA scaling laws are discussed afterwards to better understand what laser or plasma parameters have to be adjusted in order to improve electron beam quality. The FEL is secondly discussed starting with the spontaneous emission, followed by the different FEL configurations, the electron beam transport to the undulator and finally the scaling laws and correction terms in the high gain case. Then, the different types of compact undulators that can be implemented for an LPA based FEL application are analyzed. Finally, examples of relevant experiments are reported by describing the transport beamline, presenting the spontaneous emission characteristics achieved so far and the future prospects.
- Published
- 2021
- Full Text
- View/download PDF
10. EuPRAXIA conceptual design report
- Author
-
Ke Wang, A. Y. Molodozhentsev, L. Boulton, Barbara Marchetti, Maria Weikum, Giuseppe Dattoli, Ulrich Schramm, P. Delinikolas, Victor Malka, T. L. Audet, Anna Giribono, Cristina Vaccarezza, Erik Bründermann, Marco Bellaveglia, Fernando Brandi, Vladimir Shpakov, F. Massimo, Dimitris N. Papadopoulos, D. Ullmann, Manuel Kirchen, Christophe Simon-Boisson, Axel Bernhard, Luca Piersanti, Marco Galimberti, Masaki Kando, Federico Nguyen, Suming Weng, Dario Giove, Thomas M. Spinka, Barbara Patrizi, A. Ghigo, R. Pattathil, M. A. Pocsai, Arie Irman, A. Chancé, Y. Zhao, Hao Zhang, Zulfikar Najmudin, Vladimir Litvinenko, Fabrice Marteau, G. Kirwan, U. Rotundo, Florian Grüner, L. O. Silva, F. Falcoz, Joana Luis Martins, D. Alesini, D. Khikhlukha, Francesco Iungo, Z. Mazzotta, Angelo Biagioni, A. F. Habib, Wim Leemans, S. Jaster-Merz, Alessandro Vannozzi, Leonida A. Gizzi, Fabien Briquez, S. Bartocci, Petra Koester, Tamina Akhter, Phu Anh Phi Nghiem, G. C. Bussolino, Jorge Vieira, Adolfo Esposito, D. Di Giovenale, Jens Osterhoff, Sergio Cantarella, Kristjan Poder, Bernhard Holzer, Nicolas Delerue, Brigitte Cros, Fabio Villa, Igor Andriyash, Alessandro Stecchi, Paul Crump, Sally Wiggins, Constantin Haefner, A. Del Dotto, Oscar Jakobsson, Alessandro Gallo, Emily Sistrunk, G. Di Pirro, Olena Kononenko, Yang Li, P. Campana, A. Martinez de la Ossa, Anke-Susanne Müller, Christoph Lechner, Brendan A. Reagan, Stuart Mangles, Andrew Sutherland, D. Kocon, E. N. Svystun, Simon M. Hooker, Ruggero Ricci, Javier Resta-López, C. D. Murphy, R. Walczak, Dino A. Jaroszynski, M. Yabashi, Chan Joshi, P. Santangelo, Maria Pia Anania, Konstantin Kruchinin, C. Simon, M. Hübner, C. A. Lindstrøm, Markus Büscher, Ulrich Dorda, J. Wolfenden, Alvin C. Erlandson, G. Korn, Sergey Mironov, Alessandro Rossi, Carl Schroeder, Zheng-Ming Sheng, Olle Lundh, T. Silva, Lucas Schaper, A. Ferran Pousa, M. Del Franco, Audrey Beluze, M. H. Bussmann, Alberto Marocchino, Gilles Maynard, Min Chen, Andrea Mostacci, Alexander Knetsch, Renato Fedele, M. Rossetti Conti, Amin Ghaith, G. Costa, R. Brinkmann, Gaetano Fiore, Claes-Göran Wahlström, J. Fils, Luca Serafini, Fabrizio Bisesto, J. Cowley, X. Li, Andreas Lehrach, Augusto Marcelli, Vittoria Petrillo, M. Ibison, Antonio Falone, A. Beck, Bruno Buonomo, D. Oumbarek Espinos, Daria Pugacheva, Stefan Karsch, A. Beaton, A. Nutter, Carsten Welsch, F. Mathieu, Christophe Szwaj, R. Fiorito, Paul Scherkl, C. Le Blanc, Arie Zigler, J. Scifo, Malte C. Kaluza, Craig W. Siders, Angelo Stella, Mathieu Valléau, Ujjwal Sinha, M. J. V. Streeter, A. Welsch, Efim A. Khazanov, Eléonore Roussel, Gianluca Sarri, Lucia Sabbatini, Silvia Morante, T. Heinemann, A. Aschikhin, G. Di Raddo, L. Pribyl, S. Romeo, Alberto Bacci, N. E. Andreev, Matteo Vannini, A. Bonatto, Francesco Filippi, Klaus Ertel, Riccardo Pompili, Ricardo Fonseca, Olivier Marcouillé, E. Di Pasquale, Jason Cole, M. Artioli, R. D'Arcy, Giovanni Franzini, Marco Diomede, Andreas Maier, I. Kostyukov, A. Specka, Serge Bielawski, Wei Lu, F. Cioeta, A. Mosnier, Grace Manahan, S. Vescovi, Alessandro Cianchi, P. Niknejadi, Francesco Stellato, Luigi Pellegrino, Oliver Karger, A. Helm, Bernhard Hidding, Paolo Tomassini, J. A. Clarke, A. Petralia, Davide Terzani, Enrica Chiadroni, Ralph Assmann, Alexandra Alexandrova, Paul Mason, R. Rossmanith, Jun Zhu, Thomas C. Galvin, R. Torres, Agustin Lifschitz, M. E. Couprie, Massimo Ferrario, F. Brottier, S. De Nicola, Kevin Cassou, Tomonao Hosokai, Andy J. Bayramian, J. L. Paillard, Gabriele Tauscher, P. A. Walker, Geetanjali Sharma, P. Lee, Guido Toci, Farzad Jafarinia, Simona Incremona, Imre Ferenc Barna, Charles Kitegi, D. R. Symes, M. Croia, Vladyslav Libov, J. M. Dias, Guoxing Xia, L. Labate, Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Brundermann, E., Buscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D'Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hubner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitegi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrom, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouille, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Muller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valleau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., Zigler, A., Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN, Sezione di Napoli), Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati (LNF), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Engineering & Physical Science Research Council (EPSRC), Science and Technology Facilities Council (STFC), and EuPRAXIA
- Subjects
Technology ,electron: energy ,AMPLIFIED SPONTANEOUS-EMISSION ,wake field [plasma] ,General Physics and Astronomy ,costs ,plasma: wake field ,free electron laser ,GeV ,01 natural sciences ,7. Clean energy ,wake field [acceleration] ,010305 fluids & plasmas ,law.invention ,Laser technology ,acceleration: wake field ,Conceptual design ,FREE-ELECTRON LASER ,AT-SPARC-LAB ,law ,IN-CELL CODE ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,PLASMA-WAKEFIELD ACCELERATION ,General Materials Science ,LATERAL SHEARING INTERFEROMETRY ,media_common ,Applied Physics ,Settore FIS/01 ,02 Physical Sciences ,T1 ,light source ,Physics ,Settore FIS/07 ,accelerator: plasma ,Schedule (project management) ,Physical Sciences ,Systems engineering ,positron ,Plasma acceleration ,X rays ,compact accelerators ,performance ,WAKE-FIELD ACCELERATION ,X-RAY SOURCE ,Project implementation ,Fluids & Plasmas ,Physics, Multidisciplinary ,accelerator [electron] ,Physics and Astronomy(all) ,HIGH PEAK POWER ,electron: accelerator ,horizon ,medicine: imaging ,X-ray ,accelerators ,Materials Science(all) ,0103 physical sciences ,media_common.cataloged_instance ,ddc:530 ,European union ,Physical and Theoretical Chemistry ,010306 general physics ,energy [electron] ,01 Mathematical Sciences ,plasma: acceleration ,acceleration [plasma] ,Electron energy ,Science & Technology ,imaging [medicine] ,plasma [accelerator] ,Particle accelerator ,plasmas ,Accelerators and Storage Rings ,laser ,Automatic Keywords ,gamma ray ,linear collider ,ddc:600 ,CHIRPED-PULSE AMPLIFICATION - Abstract
European physical journal special topics 229(24), 3675 - 4284 (2020). doi:10.1140/epjst/e2020-000127-8, This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years., Published by Springer, Heidelberg
- Published
- 2020
- Full Text
- View/download PDF
11. Characterization of undulator radiation from a compact laser plasma acceleration source
- Author
-
Amin Ghaith, Marie Labat, Alexandre Loulergue, Sebastien Corde, Olena Kononenko, Eléonore Roussel, Marie-Emmanuelle Couprie, Driss Oumbarek, Cédric Thaury, and Mathieu Valléau
- Subjects
Physics ,Spectrometer ,business.industry ,Radiation ,Undulator ,Laser ,Plasma acceleration ,Ray ,Synchrotron ,law.invention ,Optics ,Beamline ,law ,Physics::Accelerator Physics ,business - Abstract
While synchrotron light facilities and Free Electron Lasers (FELs) are widely used for matter investigation, Laser Plasma Acceleration (LPA), delivering nowadays GeV electron beams in few centimeter accelerating distance, can be considered to drive undulator radiation and FEL. We report on the generation of undulator radiation on the COXINEL dedicated manipulation line designed for an FEL application. The LPA large divergence is handled with variable gradient permanent magnet quadrupoles and the high energy spread is reduced via a magnetic chicane. We evidence the undulator spatio-spectral signature on the first and second harmonics while measuring the radiation focused onto the entrance slit of a spectrometer equipped with a CDD camera. A good agreement is found between measurements and SRW simulations, using electron beam parameters in the undulator deduced from the measured initial electron beam parameters transported along the beamline. In addition, ray optics approach is compared to Fourier optics for the radiation propagation through optical elements.
- Published
- 2020
- Full Text
- View/download PDF
12. COXINEL transport of laser plasma accelerated electrons
- Author
-
Alexandre Loulergue, Alain Lestrade, Sebastien Corde, Driss Oumbarek Espinos, Cédric Thaury, Mathieu Valléau, Marie Labat, Amin Ghaith, Guillaume Lambert, Charles Kitegi, Jean-Philippe Goddet, Frederic Blache, Amar Tafzi, Eléonore Roussel, Fabrice Marteau, Igor Andriyash, Olena Kononenko, Victor Malka, Thomas André, Marie-Emmanuelle Couprie, Mourad Sebdaoui, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), and Centre National de la Recherche Scientifique (CNRS)-Université de Lille
- Subjects
Physics ,business.industry ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Free-electron laser ,Plasma ,Electron ,Undulator ,Condensed Matter Physics ,Laser ,Plasma acceleration ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Optics ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Quadrupole ,Cathode ray ,Physics::Accelerator Physics ,010306 general physics ,business - Abstract
International audience; Laser plasma acceleration (LPA) enables the generation of an up to several GeV electron beam with a short bunch length and high peak current within a centimeter scale. In view of undulator type light source applications, electron beam manipulation has to be applied. We report here on detailed electron beam transport for an LPA electron beam on the COXINEL test line, that consists of strong permanent quadrupoles to handle the electron beam divergence, a magnetic chicane to reduce the energy spread and a second set of quadrupoles for adjusting the focusing inside the undulator. After describing the measured LPA characteristics, we show that we can properly transport the electron beam along the line, thanks to several screens. We also illustrate the influence of the chromatic effects induced by the electron beam energy spread, both experimentally and numerically. We then study the sensitivity of the transport to the electron beam pointing and skewed quadrupolar components.
- Published
- 2020
- Full Text
- View/download PDF
13. Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser
- Author
-
Marie Labat, Mathieu Valléau, Marie-Emmanuelle Couprie, Alexandre Loulergue, Driss Oumbarek, Sebastien Corde, Amin Ghaith, Olivier Marcouillé, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
- Subjects
Brightness ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Electron ,electron beam brightness ,free electron laser ,Radiation ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Instrumentation ,laser plasma acceleration ,Physics ,010308 nuclear & particles physics ,business.industry ,Free-electron laser ,Undulator ,Laser ,Plasma acceleration ,lcsh:QC1-999 ,electron beambrightness ,Cathode ray ,Physics::Accelerator Physics ,lcsh:QC770-798 ,business ,undulator radiation ,lcsh:Physics - Abstract
International audience; We report here on spontaneous undulator radiation and free electron laser calculations after a 10-m long transport line (COXINEL) using a Laser Plasma acceleration (LPA) source. The line enables the manipulation of the properties of the produced electron beams (energy spread, divergence, dispersion) in view of light source applications. The electron beam brightness and undulator radiation brilliance are addressed by an analytical approach enabling us to point out the influence of chromatic effects in the COXINEL case.
- Published
- 2020
- Full Text
- View/download PDF
14. Development of Cryogenic Permanent Magnet Undulators at SOLEIL
- Author
-
O. Marcouillé, Fabien Briquez, Charles Kitegi, Frederic Blache, Marie-Emmanuelle Couprie, F. Marteau, Mathieu Valléau, and Amin Ghaith
- Subjects
Nuclear and High Energy Physics ,Materials science ,Magnet ,0103 physical sciences ,Mechanical engineering ,010306 general physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas - Published
- 2018
- Full Text
- View/download PDF
15. Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam
- Author
-
Christian Herbeaux, Cédric Bourgoin, J. P. Goddet, Oleg Chubar, Marie Labat, Alain Lestrade, Sebastien Corde, Fabien Briquez, Victor Malka, Yannick Dietrich, Eléonore Roussel, D. Dennetière, C. Benabderrahmane, Jean-Pierre Duval, Guillaume Lambert, Charles Kitegi, Stéphane Sebban, T. André, C. De Oliveira, Frederic Blache, C. Szwaj, Amin Ghaith, P. Berteaud, Amar Tafzi, Alexandre Loulergue, Fabrice Marteau, Igor Andriyash, Slava Smartsev, N. Leclercq, Driss Oumbarek, A. Carcy, Nicolas Hubert, Serge Bielawski, M. E. Couprie, M. El Ajjouri, Olena Kononenko, J. Vétéran, Mourad Sebdaoui, Julien Gautier, Olivier Marcouillé, Patrick Rommeluère, Cédric Thaury, Mathieu Valléau, F. Bouvet, François Polack, Keihan Tavakoli, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Department of Physics of Complex Systems, Weizmann Institute of Science [Rehovot, Israël], Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), ANR-10-LABX-0039,PALM,Physics: Atoms, Light, Matter(2010), ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), European Project: 340015,EC:FP7:ERC,ERC-2013-ADG,COXINEL(2014), European Project: 339128,EC:FP7:ERC,ERC-2013-ADG,X-FIVE(2014), European Project: 653782,H2020,H2020-INFRADEV-1-2014-1,EuPRAXIA(2015), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Synchrotron SOLEIL [SSOLEIL], and Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
- Subjects
[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,lcsh:Medicine ,Synchrotron radiation ,Electron ,Radiation ,7. Clean energy ,01 natural sciences ,Article ,Radiation properties ,010305 fluids & plasmas ,law.invention ,Optics ,law ,Free-electron lasers ,0103 physical sciences ,lcsh:Science ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Spectral purity ,[PHYS]Physics [physics] ,Physics ,Multidisciplinary ,business.industry ,lcsh:R ,Laser-produced plasmas ,Undulator ,Laser ,Synchrotron ,Physics::Accelerator Physics ,lcsh:Q ,business - Abstract
Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200–300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator.
- Published
- 2019
- Full Text
- View/download PDF
16. Control of undulator radiation using a Laser Plasma Acceleration Source
- Author
-
Amin Ghaith, Sébastian Corde, Alexandre Loulergue, Mathieu Valléau, Marie-Emmanuelle Couprie, Victor Malka, Driss Oumbarek-Espinos, Thomas André, Marie Labat, Olivier Marcouillé, Eléonore Roussel, Serge Bielawski, Olena Kononenko, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,History ,Range (particle radiation) ,Spectrometer ,business.industry ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Undulator ,Radiation ,Laser ,Plasma acceleration ,01 natural sciences ,010305 fluids & plasmas ,Computer Science Applications ,Education ,law.invention ,Wavelength ,Optics ,law ,0103 physical sciences ,Physics::Accelerator Physics ,Thermal emittance ,010306 general physics ,business - Abstract
Spontaneous undulator radiation emission, after the COXINEL line using a Laser Plasma acceleration (LPA) source, has been observed. The line enables to manipulate the electron beam phase space such as emittance, dispersion and energy spread along a 10 m long transport. The large divergence is handled at a very early stage to mitigate the chromatic emittance, using high gradient permanent magnet based quadrupoles mounted on translation tables. The operating energy is between 161-180 MeV focused in a 2-m long cryo-ready undulator with a period of 18 mm emitting light in the Ultra-Violet range. The spectral flux is characterized using a spectrometer. The wavelength is tuned by either changing the electron beam energy or by adjusting the undulator gap. The radiation pattern signature is illustrated alongside its dependence on the energy spread that is modified by introducing a slit in a magnetic chicane where a small relative bandwidth of 5% has been achieved.
- Published
- 2019
- Full Text
- View/download PDF
17. Progress towards laser plasma based free electron laser on COXINEL
- Author
-
N. Leclercq, Amin Ghaith, Slava Smartsev, Serge Bielawski, Jean-Pierre Duval, Guillaume Lambert, Jean-Philippe Goddet, Christophe Szwaj, Moussa El-Ajjouri, Alexandre Loulergue, Victor Malka, Patrick Rommeluère, Christian Herbeaux, F. Bouvet, Nicolas Hubert, Amar Tafzi, Martin Khojoyan, Yannick Dietrich, Keihan Tavakoli, Olivier Marcouillé, Mourad Sebdaoui, Thomas André, Fabrice Marteau, Alain Lestrade, Sebastien Corde, Charles Kitegi, Olena Kononenko, Cédric Thaury, Mathieu Valléau, Driss Oumbarek-Espinos, Eléonore Roussel, Marie Labat, Marie-Emmanuelle Couprie, Kim Ta Phuoc, Igor Andriyash, Frederic Blache, Julien Gautier, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,History ,business.industry ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Free-electron laser ,Undulator ,Laser ,Plasma acceleration ,01 natural sciences ,010305 fluids & plasmas ,Computer Science Applications ,Education ,law.invention ,Optics ,law ,Ionization ,0103 physical sciences ,Cathode ray ,010306 general physics ,Chicane ,business ,Spectral purity - Abstract
The Free Electron Laser (FEL) application of Laser Plasma Acceleration (LPA) requires the handling of the energy spread and divergence. The COXINEL manipulation line, designed and built at SOLEIL for this purpose, consists of high gradient quadrupoles for divergence handling and a decompression chicane for energy sorting, enabling FEL amplification with baseline parameters. Installed at Laboratoire d’Optique Appliquee (LOA), it uses robust electrons generated and accelerated by ionization injection using a 30 TW laser. We report here on the work progress towards a FEL demonstration. The LPA measured electron beam characteristics deviates from the baseline reference case. After the installation of the equipment, the electron beam transport has first been optimized. The electron position and dispersion are independently adjusted. Then, undulator radiation has been measured. The spectral purity is controlled via the energy spread adjusted in the slit located in the chicane. FEL effect demonstration is within reach, with currently achieved performance on different LPA experiments.
- Published
- 2019
- Full Text
- View/download PDF
18. EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality
- Author
-
T. L. Audet, P. Lee, D. R. Symes, J. A. Clarke, Vladimir Shpakov, M. Croia, Gilles Maynard, A. Aschikhin, A. Ferran Pousa, Feiyu Li, R. Pattathil, Zulfikar Najmudin, A. Martinez de la Ossa, D. Alesini, Konstantin Kruchinin, Vladyslav Libov, Simon M. Hooker, Carsten Welsch, A Specka, F. Mathieu, Jun Zhu, A. Y. Molodozhentsev, T. Silva, F. Massimo, Brigitte Cros, Massimo Ferrario, X. Li, M Vujanovic, Bernhard Hidding, Ricardo Fonseca, Paolo Tomassini, M. E. Couprie, Ulrich Dorda, Giuseppe Dattoli, Amin Ghaith, Angelo Stella, Davide Terzani, E. N. Svystun, L. Labate, Ralph Assmann, Suming Weng, A. Helm, Alessandro Cianchi, Samuel R. Yoffe, L. O. Silva, Nicolas Delerue, P. A. Walker, Maria Weikum, P. Niknejadi, Federico Nguyen, Cristina Vaccarezza, A. Del Dotto, S. Romeo, A. Chancé, Enrica Chiadroni, Daniel Marx, L. A. Gizzi, Guido Toci, J. Wolfenden, Timon Mehrling, Alessandro Rossi, Jorge Vieira, Zheng-Ming Sheng, Riccardo Pompili, Sally Wiggins, Lucas Schaper, A. Mosnier, Anna Giribono, Zeudi Mazzotta, Dino A. Jaroszynski, C. Simon, M. J. V. Streeter, Barbara Marchetti, M. Ibison, Phu Anh Phi Nghiem, Andrea Mostacci, Min Chen, A. Beck, D. Oumbarek Espinos, Roman Walczak, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), EuPRAXIA, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Virtual Geographic Environment, Ministry of Education of the People’s Republic of China, Nanjing Normal University, Nanjing China, Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Environmental and Geophysical Sciences Lab (ENGEOS Lab), Khalifa University, Istituto Nazionale di Ottica (INO), and National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
- Subjects
History ,Low emittance ,Plasma parameters ,Plasmas, accelerators, diagnostics ,media_common.quotation_subject ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Laser particle acceleration ,7. Clean energy ,01 natural sciences ,Education ,Acceleration ,accelerators ,0103 physical sciences ,Electronic engineering ,diagnostics ,ddc:530 ,Thermal emittance ,Quality (business) ,010306 general physics ,QC ,plasma ,media_common ,emittance ,010308 nuclear & particles physics ,European research ,Plasma ,acceleration ,Computer Science Applications ,laser ,injection ,Plasmas ,Laser beam quality - Abstract
International audience; The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized.
- Published
- 2019
- Full Text
- View/download PDF
19. Towards a free electron laser using laser plasma acceleration on COXINEL
- Author
-
S. Corde, J. P. Goddet, Frederic Blache, F. Bouvet, Christian Herbeaux, M. E. Couprie, Fabien Briquez, C. Benabderrahmane, Fabrice Marteau, Victor Malka, M. El Ajjouri, Serge Bielawski, C. Evain, Eléonore Roussel, Alain Lestrade, Driss Oumbarek, C. Szwaj, Slava Smartsev, C. Thaury, Nicolas Hubert, François Polack, Amin Ghaith, Patrick Rommeluère, K. Ta Phuoc, Jean-Pierre Duval, Benoît Mahieu, Guillaume Lambert, Keihan Tavakoli, A. Tafzi, Martin Khojoyan, Alexandre Loulergue, C. de Oliviera, Igor Andriyash, Yannick Dietrich, Thomas André, Charles Kitegi, Olivier Marcouillé, N. Leclercq, D. Dennetière, Marie Labat, Mourad Sebdaoui, J. Gautier, and Mathieu Valléau
- Subjects
Physics ,business.industry ,Free-electron laser ,Undulator ,Plasma acceleration ,Laser ,law.invention ,Optics ,law ,Thermal emittance ,Spontaneous emission ,business ,Beam (structure) ,Beam divergence - Abstract
Since the laser invention [1, 2], the advent of Free Electron Lasers (FEL) [3, 4] in the X-ray domain half a century later, has opened new areas for matter investigation with higher temporal resolution. In parallel, the development of laser plasma acceleration (LPA) [5] that delivers today several GeV beam acceleration [6] in a short distance appears also very promising. The qualification of the LPA for FEL application can thus be viewed as an important challenge [7]. Nevertheless, present LPA electron beam parameters (e. g. energy spread and beam divergence) do not meet conventional accelerator state-of-the-art performance and FEL application requires a specific beam handling. In such a prospect, the COXINEL beam manipulation line [8, 9] using variable permanent magnet quadrupoles for emittance growth mitigation and de-mixing chicane for the energy spread handling developed at SOLEIL has been installed for using electrons produced with an intense laser of Laboratoire d’Optique Appliquee (LOA). Strategies for controlling electron beam position and dispersion have been elaborated and demonstrated [10]. Finally, undulator spontaneous emission has been measured at the end of the line.
- Published
- 2019
- Full Text
- View/download PDF
20. Coherent Soft X-Ray pulses from an Echo-Enabled Harmonic Generation Free-Electron Laser
- Author
-
Eugenio Ferrari, Marco Veronese, Ivan Cudin, C. Scafuri, Emiliano Principi, Roberto Sauro, Lorenzo Raimondi, Davide Vivoda, Mauro Trovò, Paolo Sigalotti, M. Zaccaria, M. Svandrlik, Mihai Pop, D. Zangrando, Paolo Cinquegrana, Flavio Capotondi, Giulio Gaio, Carlo Spezzani, Bruno Diviacco, Giuseppe Penco, G. Kurdi, Simone Spampinati, Amin Ghaith, W. M. Fawley, Claudio Masciovecchio, Marcello Coreno, Marco Cautero, L. Badano, David Garzella, Fatma Iazzourene, Nicola Mahne, Eléonore Roussel, Vanessa Grattoni, Giovanni De Ninno, L. Sturari, F. Giacuzzo, Laura Foglia, Niky Bruchon, Dao Xiang, Ivaylo Nikolov, T. Tanikawa, Marie Emmanuelle Couprie, Primož Rebernik Ribič, S. Grulja, Miltcho B. Danailov, Chao Feng, Luca Giannessi, D. Castronovo, Mario Ferianis, Enrico Allaria, Marco Zangrando, Alexander Demidovich, A. Abrami, M. Bossi, Najmeh Mirian, Paolo Miotti, Gregory Penn, Fabio Frassetto, Eduard Prat, Michele Manfredda, Marco Malvestuto, Luca Poletto, Marco Lonza, Erik Hemsing, Hans-Heinrich Braun, Simone Di Mitri, Sven Reiche, Rebernik Ribic, P., Abrami, A., Badano, L., Bossi, M., Braun, H. -H., Bruchon, N., Capotondi, F., Castronovo, D., Cautero, M., Cinquegrana, P., Coreno, M., Couprie, M. E., Cudin, I., Boyanov Danailov, M., De Ninno, G., Demidovich, A., Di Mitri, S., Diviacco, B., Fawley, W. M., Feng, C., Ferianis, M., Ferrari, E., Foglia, L., Frassetto, F., Gaio, G., Garzella, D., Ghaith, A., Giacuzzo, F., Giannessi, L., Grattoni, V., Grulja, S., Hemsing, E., Iazzourene, F., Kurdi, G., Lonza, M., Mahne, N., Malvestuto, M., Manfredda, M., Masciovecchio, C., Miotti, P., Mirian, N. S., Petrov Nikolov, I., Penco, G. M., Penn, G., Poletto, L., Pop, M., Prat, E., Principi, E., Raimondi, L., Reiche, S., Roussel, E., Sauro, R., Scafuri, C., Sigalotti, P., Spampinati, S., Spezzani, C., Sturari, L., Svandrlik, M., Tanikawa, T., Trovo, M., Veronese, M., Vivoda, D., Xiang, D., Zaccaria, M., Zangrando, D., Zangrando, M., Allaria, E. M., Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDyl), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
echo-enabled harmonic generation ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Physics::Optics ,free-electron laser ,X-ray ,02 engineering and technology ,01 natural sciences ,Mathematical Sciences ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,Relativistic electron beam ,High harmonic generation ,ddc:530 ,free-electron-laser ,Physics ,business.industry ,Free-electron laser ,021001 nanoscience & nanotechnology ,Laser ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Optoelectronics & Photonics ,Atomic electron transition ,Physical Sciences ,Harmonic ,Cathode ray ,Physics::Accelerator Physics ,0210 nano-technology ,business ,Lasing threshold - Abstract
X-ray free-electron lasers (FELs), which amplify light emitted by a relativistic electron beam, are extending nonlinear optical techniques to shorter wavelengths, adding element specificity by exciting and probing electronic transitions from core levels. These techniques would benefit tremendously from having a stable FEL source, generating spectrally pure and wavelength-tunable pulses. We show that such requirements can be met by operating the FEL in the so-called echo-enabled harmonic generation (EEHG) configuration. Here, two external conventional lasers are used to precisely tailor the longitudinal phase space of the electron beam before emission of X-rays. We demonstrate high-gain EEHG lasing producing stable, intense, nearly fully coherent pulses at wavelengths as short as 5.9 nm (~211 eV) at the FERMI FEL user facility. Low sensitivity to electron-beam imperfections and observation of stable, narrow-band, coherent emission down to 2.6 nm (~474 eV) make the technique a prime candidate for generating laser-like pulses in the X-ray spectral region, opening the door to multidimensional coherent spectroscopies at short wavelengths. Echo-enabled harmonic generation in a free-electron laser enables 45th harmonic pulses from a 264 nm wavelength seed, yielding 5.9 nm wavelength coherent output.
- Published
- 2019
- Full Text
- View/download PDF
21. Permanent Magnet-Based Quadrupoles for Plasma Acceleration Sources
- Author
-
Charles Kitegi, Mathieu Valléau, Marie-Emmanuelle Couprie, Amin Ghaith, Fabrice Marteau, Driss Oumbarek, Synchrotron SOLEIL (SSOLEIL), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,free electron laser ,7. Clean energy ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Thermal emittance ,010306 general physics ,Instrumentation ,laser plasma acceleration ,Physics ,quadrupoles ,010308 nuclear & particles physics ,business.industry ,Free-electron laser ,permanent magnets ,Plasma ,Laser ,Plasma acceleration ,lcsh:QC1-999 ,Magnet ,lcsh:QC770-798 ,Physics::Accelerator Physics ,Strong focusing ,business ,lcsh:Physics ,Beam (structure) - Abstract
International audience; The laser plasma accelerator has shown a great promise where it uses plasma wakefields achieving gradients as high as GeV/cm. With such properties, one would be able to build much more compact accelerators, compared to the conventional RF ones, that could be used for a wide range of fundamental research and applied applications. However, the electron beam properties are quite different, in particular, the high divergence, leading to a significant growth of the emittance along the transport line. It is, thus, essential to mitigate it via a strong focusing of the electron beam to enable beam transport. High-gradient quadrupoles achieving a gradient greater than 100 T/m are key components for handling laser plasma accelerator beams. Permanent magnet technology can be used to build very compact quadrupoles capable of providing a very large gradient up to 500 T/m. We present different designs, modeled with a 3D magnetostatic code, of fixed and variable systems. We also review different quadrupoles that have already been built and one design is compared to measurements.
- Published
- 2019
- Full Text
- View/download PDF
22. Energy spread tuning of a laser-plasma accelerated electron beam in a magnetic chicane
- Author
-
D. Oumbarek Espinos, Olivier Marcouillé, Fabrice Marteau, Victor Malka, Guillaume Lambert, Charles Kitegi, Alexandre Loulergue, T. André, M-E Couprie, Mourad Sebdaoui, Eléonore Roussel, Marie Labat, O Kononenko, A. Tafzi, Frederic Blache, Igor Andriyash, J. P. Goddet, Alain Lestrade, Sebastien Corde, Amin Ghaith, F. Bouvet, Keihan Tavakoli, Cédric Thaury, Mathieu Valléau, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Department of Physics of Complex Systems, Weizmann Institute of Science [Rehovot, Israël], Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Material and Life Science, Graduate School of Engineering, Osaka University, and Osaka University [Osaka]
- Subjects
[PHYS]Physics [physics] ,Physics ,010308 nuclear & particles physics ,business.industry ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Transfer line ,Plasma ,Electron ,Radiation ,Undulator ,Condensed Matter Physics ,Laser ,01 natural sciences ,law.invention ,Optics ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Cathode ray ,Physics::Accelerator Physics ,010306 general physics ,business ,Beam (structure) - Abstract
International audience; Laser-plasma accelerators (LPA) deliver relativistic electron beams with high peak current and low emittance, with energies up to the GeV-level in only few centimetres. However, the divergence and the energy spread of these beams remain too large for potential light source applications. A magnetic transfer line can be used to manipulate the electron beam phase-space and select the transmitted energies with a slit located at its center. We will show that with a proper focusing optics along the line, one can tune the energy spread of the beam at a given energy without loss and produce undulator radiation with controlled bandwidth. We present analytic studies, numerical simulations and experimental results on the controled electron beam transport and application to undulator radiation with a control of the bandwidth.
- Published
- 2020
- Full Text
- View/download PDF
23. Control of laser plasma accelerated electrons for light sources
- Author
-
Victor Malka, Slava Smartsev, Patrick N'gotta, C. De Oliveira, Frederic Blache, François Polack, P. Berteaud, M. El Ajjouri, Clement Evain, Alain Lestrade, Sebastien Corde, Charles Bourassin-Bouchet, Keihan Tavakoli, Olivier Marcouillé, D. Dennetière, J. Vétéran, Fabien Briquez, Mourad Sebdaoui, T. El Ajjouri, Cédric Thaury, Igor Andriyash, Mathieu Valléau, Fabrice Marteau, A. Tafzi, N. Leclercq, F. Bouvet, L. Chapuis, Martin Khojoyan, Charles Kitegi, Christian Herbeaux, Nicolas Hubert, Julien Gautier, Jean-Philippe Goddet, Benoît Mahieu, Pascal Rousseau, K. Ta Phuoc, M. E. Couprie, Eléonore Roussel, Yannick Dietrich, Jean-Pierre Duval, Guillaume Lambert, C. Szwaj, C. Benabderrahmane, Marie Labat, Amin Ghaith, Patrick Rommeluère, Alexandre Loulergue, T. André, Serge Bielawski, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Weizmann Institute of Science, Department of Physics of Complex Systems, Weizmann Institute of Science [Rehovot, Israël], European Project: 340015,EC:FP7:ERC,ERC-2013-ADG,COXINEL(2014), European Project: 339128,EC:FP7:ERC,ERC-2013-ADG,X-FIVE(2014), and European Project: 653782,H2020,H2020-INFRADEV-1-2014-1,EuPRAXIA(2015)
- Subjects
Science ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,General Physics and Astronomy ,Synchrotron radiation ,7. Clean energy ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,law.invention ,Optics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,law ,0103 physical sciences ,lcsh:Science ,010306 general physics ,Physics ,Multidisciplinary ,010308 nuclear & particles physics ,business.industry ,Ultrafast electron diffraction ,Free-electron laser ,General Chemistry ,Undulator ,Laser ,Betatron ,Publisher Correction ,Physics::Accelerator Physics ,lcsh:Q ,Laser beam quality ,business ,Beam (structure) - Abstract
With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality., Electron beam quality in accelerators is crucial for light source application. Here the authors demonstrate beam conditioning of laser plasma electrons thanks to a specific transport line enabling the control of divergence, energy, steering and dispersion and the application to observe undulator radiation.
- Published
- 2018
- Full Text
- View/download PDF
24. Robustness of a plasma acceleration based Free Electron Laser
- Author
-
Fabien Briquez, Fabrice Marteau, C. Benabderrahmane, Olivier Marcouillé, Martin Khojoyan, Alexandre Loulergue, Clement Evain, Mathieu Valléau, M. E. Couprie, Amin Ghaith, Thomas André, Marie Labat, Igor Andriyash, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Brightness ,Physics and Astronomy (miscellaneous) ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Sensitivity (control systems) ,010306 general physics ,Review Articles ,Physics ,business.industry ,Free-electron laser ,Surfaces and Interfaces ,Plasma ,Undulator ,Plasma acceleration ,Laser ,lcsh:QC770-798 ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,business ,Energy (signal processing) - Abstract
Laser Plasma Accelerators (LPA) can sustain GeV/m accelerating fields offering outstanding new possibilities for compact applications. Despite the impressive recent developments, the LPA beam quality is still significantly lower than in the conventional radio-frequency accelerators, which is an issue in the cases of demanding applications such as Free Electron Lasers (FELs). If the electron beam duration is below few tens of femtosecond keeping pC charges, the mrad level divergence and few percent energy spread are particularly limiting. Several concepts of transfer line were proposed to mitigate those intrinsic properties targetting undulator radiation applications. We study here the robustness of the chromatic matching strategy for FEL amplification at 200~nm in a dedicated transport line, and analyze its sensitivity to several parameters. We consider not only the possible LPA source jitters, but also various realistic defaults of the equipment such as magnetic elements misalignements or focussing strength errors, unperfect undulator fields, etc...
- Published
- 2018
- Full Text
- View/download PDF
25. Development of Cryogenic Undulators at SOLEIL
- Author
-
Keihan Tavakoli, M. Tilmont, M. E. Couprie, C. Benabderrahmane, F. Marteau, Amin Ghaith, Olivier Marcouillé, N. Bechu, Fabien Briquez, P. Berteaud, C. Herbeaux, J. Vétéran, Mathieu Valléau, and Mourad Sebdaoui
- Subjects
Physics ,Brightness ,Wavelength ,Optics ,business.industry ,Synchrotron radiation ,business ,Magnetic field - Abstract
CPMUs enable to reduce the period, have additional number of periods within a given length, and thus achieve higher brightness at lower wavelength. CPMU are also suitable for future compact FEL applications.
- Published
- 2018
- Full Text
- View/download PDF
26. Tunable High Gradient Quadrupoles For A Laser Plasma Acceleration Based FEL
- Author
-
Amin Ghaith, C. Kitegi, Frederic Blache, Fabrice Marteau, P. Jivkov, O. Cosson, F. Forest, Mathieu Valléau, J. Veteran, M. E. Couprie, Thomas André, J. L. Lancelot, C. Benabderrahmane, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), SIGMAPHI, and Sigmaphi
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Field (physics) ,media_common.quotation_subject ,Quadrupole ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,01 natural sciences ,Asymmetry ,law.invention ,99-00 ,Optics ,Permanent magnet ,law ,0103 physical sciences ,010306 general physics ,Instrumentation ,media_common ,Physics ,010308 nuclear & particles physics ,business.industry ,Free-electron laser ,Laser ,Plasma acceleration ,00-01 ,Magnet ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,business ,Beam (structure) - Abstract
Laser Plasma Acceleration (LPA) is capable of producing a GeV beam within a cm accelerating distance, but with a rather high initial divergence and large energy spread. COXINEL aims to demonstrate a compact Free Electron Laser using such a source, where a specific transport line with adequate elements is used, such as tunable high gradient quadrupoles for handling the divergence. An innovative permanent magnet based quadrupole (QUAPEVA) made of two quadrupoles superimposed capable of generating a gradient of 200 T/m is presented. The first quadrupole consists of magnets shaped as a ring and attaining a constant gradient of 155 T/m, and the second one made of four cylindrical magnets surrounding the ring and capable of rotating around their axis to achieve a gradient tunability of $\pm$ 46 T/m. Each tuning magnet is connected to a motor and controlled independently, enabling the gradient to be tuned with a rather good magnetic center stability ($\pm$10 $\mu$m) and without any field asymmetry. The measurements and field optimization of seven quadrupoles with different magnetic lengths are reported. A set of QUAPEVA triplet, installed at COXINEL, achieved good focusing and enabled beam based alignment., Comment: 4 pages, 9 figures
- Published
- 2017
- Full Text
- View/download PDF
27. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line
- Author
-
P. Berteaud, Pascale Brunelle, Fabien Briquez, Alain Lestrade, D. Zerbib, M. E. Couprie, M. Louvet, A. Somogyi, A. Mary, Mathieu Valléau, Fabrice Marteau, Christian Herbeaux, L. Chapuis, J.-L. Marlats, C. Kitegi, N. Bechu, Keihan Tavakoli, K. Medjoubi, Patrick Rommeluère, Oleg Chubar, C. Benabderrahmane, Olivier Marcouillé, and Amin Ghaith
- Subjects
Nuclear and High Energy Physics ,Materials science ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,Free-electron laser ,Synchrotron radiation ,Surfaces and Interfaces ,Undulator ,Coercivity ,01 natural sciences ,7. Clean energy ,Spectral line ,Beamline ,Magnet ,0103 physical sciences ,Physics::Accelerator Physics ,Atomic physics ,010306 general physics ,Storage ring - Abstract
Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of ${\mathrm{RE}}_{2}{\mathrm{Fe}}_{14}\mathrm{B}$ (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using ${\mathrm{Pr}}_{2}{\mathrm{Fe}}_{14}\mathrm{B}$ instead of ${\mathrm{Nd}}_{2}{\mathrm{Fe}}_{14}\mathrm{B}$, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period ${\mathrm{Pr}}_{2}{\mathrm{Fe}}_{14}\mathrm{B}$ cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.
- Published
- 2017
- Full Text
- View/download PDF
28. Skew Quadrupole Effect of Laser Plasma Electron Beam Transport
- Author
-
Jean-Philippe Goddet, Amin Ghaith, Driss Oumbarek Espinos, Alexandre Loulergue, Charles Kitegi, Fabrice Marteau, Amar Tafzi, Olena Kononenko, Marie Labat, Thomas André, Victor Malka, Marie-Emmanuelle Couprie, Guillaume Lambert, Cédric Thaury, Mathieu Valléau, Alain Lestrade, Sebastien Corde, Mourad Sebdaoui, Frederic Blache, Eléonore Roussel, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Département d'Économie de l'École Polytechnique (X-DEP-ECO), École polytechnique (X), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Brightness ,multipolar terms ,free electron laser ,Electron ,lcsh:Technology ,01 natural sciences ,law.invention ,lcsh:Chemistry ,Optics ,law ,0103 physical sciences ,quadrupole ,General Materials Science ,010306 general physics ,lcsh:QH301-705.5 ,Instrumentation ,laser plasma acceleration ,Fluid Flow and Transfer Processes ,Physics ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,lcsh:T ,010308 nuclear & particles physics ,business.industry ,Process Chemistry and Technology ,General Engineering ,Skew ,Free-electron laser ,Laser ,Plasma acceleration ,lcsh:QC1-999 ,Computer Science Applications ,lcsh:Biology (General) ,lcsh:QD1-999 ,lcsh:TA1-2040 ,magnetism ,Physics::Accelerator Physics ,electron beam transport ,lcsh:Engineering (General). Civil engineering (General) ,business ,lcsh:Physics ,Beam (structure) ,Beam divergence - Abstract
International audience; Laser plasma acceleration (LPA) capable of providing femtosecond and GeV electron beams in cm scale distances brings a high interest for different applications, such as free electron laser and future colliders. Nevertheless, LPA high divergence and energy spread require an initial strong focus to mitigate the chromatic effects. The reliability, in particular with the pointing fluctuations, sets a real challenge for the control of the dispersion along the electron beam transport. We examine here how the magnetic defects of the first strong quadrupoles, in particular, the skew terms, can affect the brightness of the transported electron beam, in the case of the COXINEL transport line, designed for manipulating the electron beam properties for a free electron laser application. We also show that the higher the initial beam divergence, the larger the degradation. Experimentally, after having implemented a beam pointing alignment compensation method enabling us to adjust the position and dispersion independently, we demonstrate that the presence of non-negligible skew quadrupolar components induces a transversal spread and tilt of the beam, leading to an emittance growth and brightness reduction. We are able to reproduce the measurements with beam transport simulations using the measured electron beam parameters.
- Published
- 2019
- Full Text
- View/download PDF
29. Publisher Correction: Control of laser plasma accelerated electrons for light sources
- Author
-
Charles Bourassin-Bouchet, Frederic Blache, Marie Labat, C. Benabderrahmane, Alexandre Loulergue, Clement Evain, T. El Ajjouri, Yannick Dietrich, P. Berteaud, Fabien Briquez, Fabrice Marteau, L. Chapuis, N. Leclercq, A. Tafzi, Martin Khojoyan, J. Vétéran, Julien Gautier, K. Ta Phuoc, Eléonore Roussel, Jean-Pierre Duval, Guillaume Lambert, Christian Herbeaux, Mourad Sebdaoui, Serge Bielawski, M. E. Couprie, Alain Lestrade, Slava Smartsev, Sebastien Corde, Nicolas Hubert, Igor Andriyash, Patrick N'gotta, Benoît Mahieu, C. De Oliveira, C. Szwaj, Pascal Rousseau, M. El Ajjouri, D. Dennetière, Cédric Thaury, Mathieu Valléau, Victor Malka, Amin Ghaith, Charles Kitegi, Olivier Marcouillé, T. André, Patrick Rommeluère, François Polack, Keihan Tavakoli, J. P. Goddet, F. Bouvet, Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Coupling ,Multidisciplinary ,business.industry ,Science ,General Physics and Astronomy ,General Chemistry ,Plasma ,Electron ,Laser ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,Acceleration ,Optics ,[SDU]Sciences of the Universe [physics] ,law ,Cathode ray ,Beta (velocity) ,lcsh:Q ,business ,lcsh:Science - Abstract
The original version of this Article contained an error in the last sentence of the first paragraph of the Introduction and incorrectly read ‘A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime in equation 11, nx(n-β) x β: n the two times and beta the two times should be bold since they are vectorsin Eq. 12, β should be bold as well.’ The correct version is ‘A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime.’This has been corrected in both the PDF and HTML versions of the Article.
- Published
- 2018
- Full Text
- View/download PDF
30. COXINEL transport of laser plasma accelerated electrons.
- Author
-
Driss Oumbarek Espinos, Amin Ghaith, Alexandre Loulergue, Thomas André, Charles Kitégi, Mourad Sebdaoui, Fabrice Marteau, Frédéric Blache, Mathieu Valléau, Marie Labat, Alain Lestrade, Eléonore Roussel, Cédric Thaury, Sébastien Corde, Guillaume Lambert, Olena Kononenko, Jean-Philippe Goddet, Amar Tafzi, Igor Andriyash, and Victor Malka
- Subjects
- *
LASER plasmas , *ELECTRON beams , *LASER plasma accelerators , *FREE electron lasers , *ELECTRON plasma , *ELECTRON transport , *PARTICLE beam bunching - Abstract
Laser plasma acceleration (LPA) enables the generation of an up to several GeV electron beam with a short bunch length and high peak current within a centimeter scale. In view of undulator type light source applications, electron beam manipulation has to be applied. We report here on detailed electron beam transport for an LPA electron beam on the COXINEL test line, that consists of strong permanent quadrupoles to handle the electron beam divergence, a magnetic chicane to reduce the energy spread and a second set of quadrupoles for adjusting the focusing inside the undulator. After describing the measured LPA characteristics, we show that we can properly transport the electron beam along the line, thanks to several screens. We also illustrate the influence of the chromatic effects induced by the electron beam energy spread, both experimentally and numerically. We then study the sensitivity of the transport to the electron beam pointing and skewed quadrupolar components. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.