1. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo.
- Author
-
Han X, Alameh MG, Gong N, Xue L, Ghattas M, Bojja G, Xu J, Zhao G, Warzecha CC, Padilla MS, El-Mayta R, Dwivedi G, Xu Y, Vaughan AE, Wilson JM, Weissman D, and Mitchell MJ
- Subjects
- Animals, Mice, Nanoparticles chemistry, Humans, Structure-Activity Relationship, Gene Transfer Techniques, Liposomes, Lipids chemistry, RNA, Messenger genetics, Amidines chemistry
- Abstract
Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids. Structure-activity relationship analysis of a combinatorial library of 100 chemically diverse AID-lipids leads to the identification of a tail-like amine-ring-alkyl aniline that generally affords efficacious lipids. Experimental and theoretical studies show that the embedded bulky benzene ring can enhance endosomal escape and mRNA delivery by enabling the lipid to adopt a more conical shape. The lead AID-lipid can not only mediate local delivery of mRNA vaccines and systemic delivery of mRNA therapeutics, but can also alter the tropism of liver-tropic LNPs to selectively deliver gene editors to the lung and mRNA vaccines to the spleen., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF