5 results on '"Amelia Tait-Kamradt"'
Search Results
2. Structural and Regulatory Changes in PBP4 Trigger Decreased β-Lactam Susceptibility in Enterococcus faecalis
- Author
-
Louis B. Rice, Charlene Desbonnet, Amelia Tait-Kamradt, Monica Garcia-Solache, John Lonks, Thomas M. Moon, Éverton D. D’Andréa, Rebecca Page, and Wolfgang Peti
- Subjects
antibiotic resistance ,Enterococcus ,penicillin-binding proteins ,Microbiology ,QR1-502 - Abstract
ABSTRACT Enterococcus faecalis strains resistant to penicillin and ampicillin are rare and have been associated with increases in quantities of low-affinity penicillin-binding protein 4 (PBP4) or with amino acid substitutions in PBP4. We report an E. faecalis strain (LS4828) isolated from a prosthetic knee joint that was subjected to long-term exposure to aminopenicillins. Subsequent cultures yielded E. faecalis with MICs of penicillins and carbapenems higher than those for wild-type strain E. faecalis JH2-2. Sequence analysis of the pbp4 gene of LS4828 compared to that of JH2-2 revealed two point mutations with amino acid substitutions (V223I, A617T) and deletion of an adenine from the region upstream of the predicted pbp4 −35 promoter sequence (UP region). Purified PBP4 from LS4828 exhibited less affinity for Bocillin FL than did PBP4 from JH2-2, which was recapitulated by purified PBP4 containing only the A617T mutation. Differential scanning fluorimetry studies showed that the LS4828 and A617T variants are destabilized compared to wild-type PBP4. Further, reverse transcription-PCR indicated increased transcription of pbp4 in LS4828 and Western blot analysis with polyclonal PBP4 antibody revealed greater quantities of PBP4 in LS4828 than in JH2-2 lysates and membrane preparations. Placing the promoter regions from LS4828 or JH2-2 upstream of a green fluorescent protein reporter gene confirmed that the adenine deletion was associated with increased transcription. Together, these data suggest that the reduced susceptibility to β-lactam antibiotics observed in E. faecalis LS4828 results from a combination of both increased expression and remodeling of the active site, resulting in reduced affinity for penicillins and carbapenems. IMPORTANCE Enterococcus faecalis is an important cause of community-acquired and nosocomial infections and creates therapeutic dilemmas because of its frequent resistance to several classes of antibiotics. We report an E. faecalis strain with decreased ampicillin and imipenem susceptibility isolated after prolonged courses of aminopenicillin therapy for a prosthetic joint infection. Its reduced susceptibility is attributable to a combination of increased quantities of low-affinity PBP4 and an amino acid substitution in proximity to the active site that destabilizes the protein. Our findings provide a cautionary tale for clinicians who elect to “suppress” infections in prosthetic joints and offer novel insights into the interaction of β-lactam antibiotics with low-affinity PBP4. These insights will help inform future efforts to develop therapeutics capable of inhibiting clinical enterococcal strains.
- Published
- 2018
- Full Text
- View/download PDF
3. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium
- Author
-
Charlene Desbonnet, Amelia Tait-Kamradt, Monica Garcia-Solache, Paul Dunman, Jeffrey Coleman, Michel Arthur, and Louis B. Rice
- Subjects
Microbiology ,QR1-502 - Abstract
ABSTRACT The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins”) is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP). Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system. IMPORTANCE β-Lactam antibiotics remain our most effective therapies against susceptible Gram-positive bacteria. The intrinsic resistance of Enterococcus faecium to β-lactams, particularly to cephalosporins, therefore represents a major limitation of therapy. Although the primary mechanism of resistance to β-lactams in E. faecium is the presence of low-affinity monofunctional transpeptidase (class B) penicillin-binding protein Pbp5, the interaction of Pbp5 with other proteins is fundamental to maintain a resistant phenotype. The present work identifies a novel, previously uncharacterized, protein that interacts with Pbp5, whose expression increases in conjunction with stimuli that increase resistance to cephalosporins, and that confers increased resistance to cephalosporins when overexpressed. P5AP may represent a promising new target, inhibition of which could restore cephalosporin susceptibility to E. faecium.
- Published
- 2016
- Full Text
- View/download PDF
4. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium
- Author
-
Paul M. Dunman, Amelia Tait-Kamradt, Louis B. Rice, Jeffrey J. Coleman, Michel Arthur, Charlene Desbonnet, Mónica García-Solache, Brown University, University of Rochester [USA], Auburn University (AU), Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Auburn University ( AU ), Centre de Recherche des Cordeliers ( CRC ), Université Paris Diderot - Paris 7 ( UPD7 ) -École pratique des hautes études ( EPHE ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), and HAL UPMC, Gestionnaire
- Subjects
0301 basic medicine ,Penicillin binding proteins ,medicine.drug_class ,Cefepime ,030106 microbiology ,Phosphatase ,Cephalosporin ,Enterococcus faecium ,Biology ,[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Microbiology ,03 medical and health sciences ,Bacterial Proteins ,Virology ,medicine ,polycyclic compounds ,Penicillin-Binding Proteins ,Cephalosporin Resistance ,Phosphotransferases ,[ SDV.SP.PHARMA ] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,QR1-502 ,Phosphoric Monoester Hydrolases ,Anti-Bacterial Agents ,Cephalosporins ,Complementation ,Penicillin ,Biochemistry ,[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,medicine.drug ,Research Article ,Protein Binding - Abstract
The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins”) is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP). Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system., IMPORTANCE β-Lactam antibiotics remain our most effective therapies against susceptible Gram-positive bacteria. The intrinsic resistance of Enterococcus faecium to β-lactams, particularly to cephalosporins, therefore represents a major limitation of therapy. Although the primary mechanism of resistance to β-lactams in E. faecium is the presence of low-affinity monofunctional transpeptidase (class B) penicillin-binding protein Pbp5, the interaction of Pbp5 with other proteins is fundamental to maintain a resistant phenotype. The present work identifies a novel, previously uncharacterized, protein that interacts with Pbp5, whose expression increases in conjunction with stimuli that increase resistance to cephalosporins, and that confers increased resistance to cephalosporins when overexpressed. P5AP may represent a promising new target, inhibition of which could restore cephalosporin susceptibility to E. faecium.
- Published
- 2016
- Full Text
- View/download PDF
5. A Novel Genetic Region Flanks the Plasmid-Carried blaNDM-1 Isolated from a Patient in Rhode Island in 2012
- Author
-
Louis B. Rice and Amelia Tait-Kamradt
- Subjects
Klebsiella pneumoniae ,Molecular Sequence Data ,Biology ,beta-Lactamases ,Microbiology ,Open Reading Frames ,Plasmid ,Humans ,Pharmacology (medical) ,Base sequence ,Letters to the Editor ,Pharmacology ,Base Sequence ,Rhode Island ,Klebsiella infections ,biology.organism_classification ,Enterobacteriaceae ,Virology ,Klebsiella Infections ,Infectious Diseases ,Genes, Bacterial ,New delhi ,Transformation, Bacterial ,geographic locations ,Plasmids - Abstract
As of February 2013, 24 cases of New Delhi metallo-beta-lactamase (NDM)-producing Enterobacteriaceae have been reported in the United States ([1][1]). The majority of these reports involved one or two isolates, except the most recent, in which eight patients were reportedly infected or colonized ([1
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.