1. Establishing the longitudinal hemodynamic mapping framework for wearable-driven coronary digital twins
- Author
-
Cyrus Tanade, Nusrat Sadia Khan, Emily Rakestraw, William D. Ladd, Erik W. Draeger, and Amanda Randles
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Abstract Understanding the evolving nature of coronary hemodynamics is crucial for early disease detection and monitoring progression. We require digital twins that mimic a patient’s circulatory system by integrating continuous physiological data and computing hemodynamic patterns over months. Current models match clinical flow measurements but are limited to single heartbeats. To this end, we introduced the longitudinal hemodynamic mapping framework (LHMF), designed to tackle critical challenges: (1) computational intractability of explicit methods; (2) boundary conditions reflecting varying activity states; and (3) accessible computing resources for clinical translation. We show negligible error (0.0002–0.004%) between LHMF and explicit data of 750 heartbeats. We deployed LHMF across traditional and cloud-based platforms, demonstrating high-throughput simulations on heterogeneous systems. Additionally, we established LHMFC, where hemodynamically similar heartbeats are clustered to avoid redundant simulations, accurately reconstructing longitudinal hemodynamic maps (LHMs). This study captured 3D hemodynamics over 4.5 million heartbeats, paving the way for cardiovascular digital twins.
- Published
- 2024
- Full Text
- View/download PDF