1. Synthesis of nanocrystalline REBO3 (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO3:Eu using a borohydride-based solution precursor route
- Author
-
Amanda E. Henkes and Raymond E. Schaak
- Subjects
Analytical chemistry ,Infrared spectroscopy ,Phosphor ,Condensed Matter Physics ,Borohydride ,Nanocrystalline material ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Inorganic Chemistry ,Crystallography ,chemistry.chemical_compound ,chemistry ,Nanocrystal ,X-ray crystallography ,Materials Chemistry ,Ceramics and Composites ,Physical and Theoretical Chemistry ,Fourier transform infrared spectroscopy - Abstract
A solution precursor route has been used to synthesize a series of nanocrystalline rare-earth borates. Amorphous precursor powders are precipitated during an aqueous reaction between RE{sup 3+} and NaBH{sub 4}, and the isolated powders can be annealed in air at 700 deg. C to form YBO{sub 3}, NdBO{sub 3}, SmBO{sub 3}, EuBO{sub 3}, GdBO{sub 3}, and HoBO{sub 3}. YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties that are similar to high-quality nanocrystals prepared by other methods. The materials have been characterized by FTIR spectroscopy, powder XRD, SEM, DSC, UV-Vis fluorimetry, and TEM with EDS and element mapping. - Graphical abstract: Amorphous nanoscopic precursor powders are formed through the aqueous reaction of RE{sup 3+} with NaBH{sub 4}. Once isolated, the powders can be annealed at 700 deg. C in air to form a series of nanocrystalline REBO{sub 3} orthoborates. Nanocrystalline YBO{sub 3}:Eu formed using this strategy shows red-orange emission properties when excited with UV light.
- Published
- 2008
- Full Text
- View/download PDF