78 results on '"Almutairi BO"'
Search Results
2. Parental (F0) exposure to Cadmium and Ketoprofen induces developmental deformities in offspring (F1): A transgenerational toxicity assessment in zebrafish model.
- Author
-
Madesh S, Sudhakaran G, Murugan R, Almutairi MH, Almutairi BO, Kathiravan MK, and Arockiaraj J
- Subjects
- Animals, Anti-Inflammatory Agents, Non-Steroidal toxicity, Female, Embryo, Nonmammalian drug effects, Male, Zebrafish, Cadmium toxicity, Water Pollutants, Chemical toxicity, Ketoprofen toxicity
- Abstract
In the aquatic environment, the primary pollutants of heavy metals and pharmaceuticals always occur in coexisting forms, and the research about combined impacts remains unclear, especially transgenerational effects. Cadmium (Cd) is a heavy metal that can damage the endocrine reproduction systems and cause thyroid dysfunction in fish. Meanwhile, ketoprofen (KPF) is a nonsteroidal anti-inflammatory drug (NSAID) that can cause neurobehavioral damage and physiological impairment. However, to our knowledge, the combined exposure of Cd and KPF in transgenerational studies has not been reported. In this investigation, sexually mature zebrafish were subjected to isolated exposure and combined exposure to Cd (10 μg/L) and KPF (10 and 100 μg/L) at environmentally relevant concentrations for 42 days. In this background, breeding capacity, chemical accumulation rate in gonads, and tissue morphologies are investigated in parental fish. This is followed by examining the malformation rate, inflammation rate, and gene transcription in the F1 offspring. Our results indicate that combined exposure of Cd and KPF to the parental fish could increase the chemical accumulation rate and tissue damage in the gonads of fish and significantly reduce the breeding ability. Furthermore, these negative impacts were transmitted to its produced F1 embryos, reflected by hatching rate, body deformities, and thyroid axis-related gene transcription. These findings provide further insights into the harm posed by Cd in the presence of KPF to the aquatic ecosystems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Neurobehavioral and bioaccumulative toxicity in adult in-vivo zebrafish model due to prolonged cadmium exposure in the presence of ketoprofen.
- Author
-
Madesh S, Sudhakaran G, Meenatchi R, Manikandan K, Dhayanithi NB, Almutairi MH, Almutairi BO, Guru A, and Arockiaraj J
- Subjects
- Animals, Water Pollutants, Chemical toxicity, Water Pollutants, Chemical pharmacokinetics, Brain metabolism, Brain drug effects, Brain pathology, Bioaccumulation, Zebrafish metabolism, Ketoprofen toxicity, Ketoprofen pharmacokinetics, Cadmium toxicity, Cadmium pharmacokinetics, Behavior, Animal drug effects
- Abstract
Increasing industrial activity causes the release of chemical compounds into aquatic habitats, including toxic heavy metals like cadmium and medications like ketoprofen, posing considerable ecological concerns. Although previous studies have shown that cadmium and ketoprofen individually cause cognitive impairment, there is a lack of information on the combined neurological effects of the two substances. We investigated the neurological consequences of persistent cadmium exposure in the presence of ketoprofen on adult zebrafish, providing an essential model for understanding cumulative impacts on vertebrate organisms. Behavioral assessments, bioaccumulation rates, biochemical studies, and histopathological exams were conducted over 42 days in authentic environmental settings. The results of our study show that cadmium (10 µg/L) and ketoprofen (10 and 100 µg/L) at environmentally relevant concentrations had a significant impact on locomotor activity, social interactions, and cognitive responses, indicating cumulative neurotoxicity in co-exposure groups compared to single pollutant groups. Biochemical tests show disturbances in antioxidant defense systems, while histological examinations reveal structural changes in zebrafish brain regions. Ketoprofen influences cadmium accumulation in the brain, underscoring the importance of conducting complete evaluations to understand the intricate interactions between environmental pollutants. This study improves our understanding of the complex interactions between heavy metals and medications, stressing the need to consider combined exposure when assessing the neurological effects on vertebrate models., (© 2024 Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
4. Protective role of 2-aminothiazole derivative against ethanol-induced teratogenic effects in-vivo zebrafish.
- Author
-
Madesh S, Sudhakaran G, Ramamurthy K, Sau A, Muthu Kumaradoss K, Almutairi MH, Almutairi BO, Palaniappan S, and Arockiaraj J
- Abstract
Teratology investigates the origins of congenital disabilities, often linked to environmental factors such as ethanol (EtOH) exposure. Ethanol at 150 μM has been associated with teratogenic effects, oxidative stress, immunological responses, and endocrine disruptions. Fetal alcohol spectrum disorder (FASD) arises from maternal alcohol consumption during pregnancy, leading to developmental delays and cognitive impairment. Due to their diverse therapeutic applications, amino thiazole derivatives are crucial in drug development. This study aimed to determine whether the 2-amino thiazole derivative, notably the 1-(4-chlorophenyl)-N-(6-nitrobenzo[d]thiazol-2-yl)ethan-1-imine (N4) compound, reduces teratogenic effects induced by embryonic EtOH exposure in a zebrafish model. Teratogenic effects, mortality, locomotion behaviour, oxidative stress, gene expression, and tissue damage were evaluated in larvae over a 7-day experimental period using three treatment concentrations (50, 100, and 150 μM). Results showed that EtOH induced morphological defects in the head, eyes, and body length of exposed larvae, along with behavioural abnormalities and oxidative damage. N4 effectively mitigated these toxic effects in a concentration-dependent manner, reducing oxidative damage, preventing teratogenic effects, and averting tissue damage induced by EtOH exposure. This study highlights the potential of N4 to enhance antioxidant and anti-inflammatory effects against ethanol-induced oxidative stress, offering promising therapeutic strategies for FASD treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Exploring marine compounds as potential biocontrol agents against powdery mildew for agricultural sustainability: a computer-based approach.
- Author
-
Sudhakaran G, Liu X, Almutairi BO, Meivelu M, and Sathishkumar K
- Abstract
Powdery mildew is a pervasive fungal disease causing significant economic losses globally. Continuous use of synthetic fungicides has led to environmental concerns and resistant fungal strains. This study explores marine-derived cephalostatins from the South African Natural Compounds Database as novel fungicidal agents for managing powdery mildew. Using molecular docking techniques, we investigated the interaction between selected cephalostatins and critical proteins involved in powdery mildew pathogenesis. Compounds were selected based on drug-likeness and bioactivity, adhering to Lipinski's Rule of Five. Molecular interactions, binding affinities, and stability were analysed using AutoDock Vina, PyMOL, and Discovery Studio. Cephalostatin 17 exhibited the highest binding affinity (-10.4 kcal/mol), indicating strong potential for inhibiting fungal growth through significant hydrogen bonding and hydrophobic interactions. The study's primary limitation is the reliance on computational predictions, necessitating experimental validation. Cephalostatin 17 stands out as a promising candidate for sustainable agricultural practices.
- Published
- 2024
- Full Text
- View/download PDF
6. Indole-3-acetic acid exposure leads to cardiovascular inflammation and fibrosis in chronic kidney disease rat model.
- Author
-
Nayak SPRR, Boopathi S, Chandrasekar M, Panda SP, Manikandan K, Chitra V, Almutairi BO, Arokiyaraj S, Guru A, and Arockiaraj J
- Subjects
- Animals, Male, Rats, Disease Models, Animal, Cardiovascular Diseases, Rats, Sprague-Dawley, Oxidative Stress drug effects, Myocardium metabolism, Myocardium pathology, Indoleacetic Acids pharmacology, Renal Insufficiency, Chronic chemically induced, Renal Insufficiency, Chronic metabolism, Fibrosis, Inflammation chemically induced
- Abstract
Indole-3-acetic acid (IAA), a protein-bound uremic toxin, has been linked to cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. This study explores the influence of IAA (125 mg/kg) on cardiovascular changes in adenine sulfate-induced CKD rats. HPLC analysis revealed that IAA-exposed CKD rats had lower excretion and increased circulation of IAA compared to both CKD and IAA control groups. Moreover, echocardiography indicated that CKD rats exposed to IAA exhibited heart enlargement, thickening of the myocardium, and cardiac hypertrophy in contrast to CKD or IAA control group. Biochemical analyses supported the finding that IAA-induced CKD rats had elevated serum levels of c-Tn-I, CK-MB, and LDH; there was also evidence of oxidative stress in cardiac tissues, with a significant decrease in SOD and CAT levels, as well as an increase in MDA levels. The gene expression analysis found significant increases in ANP, BNP, β-MHC, TNF-α, IL-1β, and NF-κB levels in IAA-exposed CKD groups in contrast to the CKD or IAA control group. In addition, higher cardiac fibrosis markers, including Col-I and Col-III. The findings of this study indicate that IAA could trigger cardiovascular inflammation and fibrosis in CKD conditions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Scaling of cotyledon and primary leaf mass versus area in Acer platanoides seedlings under different light conditions.
- Author
-
Wang J, Almutairi BO, Wang L, Shi P, Yao W, and Niinemets Ü
- Abstract
Cotyledons play an important role in early seedling establishment. However, relative to primary leaves, cotyledons tend to have a different investment-on-return strategy. To detect the potential differences in the mass ( M ) versus area ( A ) scaling relationships between cotyledons and primary leaves in different light environments, a total of 75 Acer platanoides seedlings were sampled at an open site ( n = 52; light availability: 74 ± 5 %) and a shaded site ( n = 23; light availability: 4.2 ± 1.2 %). Reduced major axis regression protocols were used to fit the M versus A scaling relationships of primary leaves and cotyledons. The bootstrap percentile method was used to test the significance of the differences in the scaling exponents of M versus A between the two light environments. The scaling exponents of cotyledons at both two sites, as well as the primary leaves at the shade site, were greater than unity indicating 'diminishing returns', while the scaling exponent of primary leaves at the open site was smaller than unity indicating 'increasing returns'. The data collectively indicated light-dependent shifts in support investments and differences in the function of cotyledons and primary leaves. Average leaf structural traits displayed significant differences between the two light environments in accordance with the premium in enhancing photosynthetic capacity in high light and light interception in low light. Although the trait responses to light availability were similar for primary leaves and cotyledons, primary leaves were more responsive to light availability, indicating lower plasticity of cotyledons in response to light levels. These results advance our understanding of the roles of cotyledons and primary leaves in the life history of seedlings in different forest light environments., Competing Interests: The authors declare no competing financial interests., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Annals of Botany Company.)
- Published
- 2024
- Full Text
- View/download PDF
8. Asiatic acid mitigates testosterone-induced benign prostatic hyperplasia in rats via activation of PPAR-γ.
- Author
-
Kamal HK, Almutairi BO, and Abdel-Naim AB
- Abstract
Prostate enlargement due to benign prostate hyperplasia (BPH) is a common, progressive disorder in elderly males with increasing prevalence. It causes devastating lower urinary tract symptoms with no satisfactory medication. Asiatic acid (AA), a natural pentacyclic triterpenoid, is known to have antiproliferative, antioxidant, and anti-inflammatory activities. The aim of this study was to evaluate the possible preventive activities of AA against BPH induced by testosterone in rats. Finasteride (0.5 mg/kg) was used as a reference drug. AA (10 or 20 mg/kg) administration inhibited the rise in prostatic weight and index induced by testosterone. Histopathological staining proved that AA mitigated the pathological features of BPH induced by testosterone, which was reflected as lower glandular epithelial in AA-treated groups. Also, the administration of AA along with testosterone restored the redox valance by inhibiting lipid peroxidation, and MDA production, and restoring the activities of superoxide dismutase (SOD) and catalase (CAT) activities. Also, AA reduced prostate interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB) protein expression. In addition, AA modulated mRNA expression of Bax and Bcl-2 in favor of apoptosis. The effects of AA (20 mg/kg) were comparable to those of finasteride. Further, AA ameliorated the rise in insulin-like growth factor 1 receptor (IGF-1R) mRNA expression. This was associated with the enhancement of the prostatic content of PPAR-γ. It can be concluded that AA mitigated the features of BPH induced by testosterone in rats. This involves antioxidant, anti-inflammatory and pro-apototic activities of AA as well as its ability to down-regulate IGF-1R expression and enhance PPAR-γ concentration in prostatic tissues., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
9. Co-occurrence of azorubine and bisphenol A in beverages increases the risk of developmental toxicity: A study in zebrafish model.
- Author
-
Haridevamuthu B, Nayak SPRR, Murugan R, Sudhakaran G, Pachaiappan R, Manikandan K, Chitra V, Almutairi MH, Almutairi BO, Kathiravan MK, and Arockiaraj J
- Subjects
- Animals, Apoptosis drug effects, Beverages, Embryo, Nonmammalian drug effects, Embryonic Development drug effects, Larva drug effects, Oxidative Stress drug effects, Benzhydryl Compounds toxicity, Phenols toxicity, Zebrafish
- Abstract
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. COX-2 targeted therapy for diabetic foot ulcers using T7-enhanced CS-PVA membranes.
- Author
-
Murugan R, Ashok K, Ramya Ranjan Nayak SP, Deivasigamani P, Almutairi MH, Almutairi BO, Guru A, Muthu Kumaradoss K, and Arockiaraj J
- Subjects
- Animals, Humans, Membranes, Artificial, Cyclooxygenase 2 metabolism, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Anti-Inflammatory Agents therapeutic use, Anti-Inflammatory Agents pharmacology, Diabetic Foot drug therapy, Diabetic Foot pathology, Polyvinyl Alcohol chemistry, Chitosan chemistry, Wound Healing drug effects, Zebrafish, Cyclooxygenase 2 Inhibitors pharmacology, Cyclooxygenase 2 Inhibitors therapeutic use
- Abstract
Diabetic foot ulcers can lead to severe complications, including infection, gangrene, and even amputation, significantly impacting patients' quality of life. The application of anti-inflammatory compounds loaded into chitosan membranes offers targeted therapeutic effects, reducing inflammation and promoting tissue regeneration. This study evaluates the therapeutic efficacy of T7, a selective COX-2 inhibitor, incorporated into chitosan-polyvinylalcohol (CS-PVA) membranes for diabetic wound treatment. Cytotoxicity analysis showed high cell viability across various T7 concentrations, indicating minimal cytotoxicity. In silico pharmacology identified 98 potential inflammation-related targets for T7, further supported by GO and KEGG enrichment analyses. Developmental toxicity tests on zebrafish embryos indicated no significant toxicity up to 100 µM concentration. SEM and FTIR analyses confirmed the successful incorporation of T7 into the CS-PVA membrane, while XRD analysis indicated structural stability. The drug release assay demonstrated a sustained release profile, crucial for prolonged therapeutic efficacy. Antibacterial activity assays revealed significant inhibition of common pathogens. In vivo wound healing assays showed accelerated wound closure and enhanced collagen deposition, with histological and immunohistochemistry analyses supporting improved tissue architecture and reduced inflammation. Gene expression analysis confirmed reduced inflammatory markers. These findings suggest that T7-loaded CS-PVA membranes offer a promising, multifaceted approach to diabetic wound treatment, combining anti-inflammatory, antimicrobial, and collagen-promoting properties for effective wound healing., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
11. Differential expression and regulation of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 gene profiles in colon cancer tissues and their in vitro response to epigenetic drugs.
- Author
-
Almutairi MH, Alrubie TM, Alshareeda AT, Albarakati N, Almotiri A, Alamri AM, Almutairi BO, and Alanazi M
- Subjects
- Humans, Male, Caco-2 Cells, HCT116 Cells, Transcription Factors genetics, Transcription Factors metabolism, Azacitidine pharmacology, Biomarkers, Tumor genetics, Biomarkers, Tumor metabolism, Middle Aged, Hydroxamic Acids pharmacology, Decitabine pharmacology, Colonic Neoplasms genetics, Colonic Neoplasms drug therapy, Colonic Neoplasms metabolism, Colonic Neoplasms pathology, Epigenesis, Genetic drug effects, Gene Expression Regulation, Neoplastic drug effects, DNA Methylation drug effects
- Abstract
Colon cancer (CC) is a significant cause of death worldwide, particularly in Saudi Arabia. To increase the accuracy of diagnosis and treatment, it is important to discover new specific biomarkers for CC. The main objectives of this research are to identify potential specific biomarkers for the early diagnosis of CC by analyzing the expressions of eight cancer testis (CT) genes, as well as to analyze how epigenetic mechanisms control the expression of these genes in CC cell lines. Tissue samples were collected from 15 male patients with CC tissues and matched NC tissues for gene expression analysis. The expression levels of specific CT genes, including ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12, were assessed using quantitative techniques. To validate the gene expression patterns, we used publicly available CC statistics. To investigate the effect of inhibition of DNA methylation and histone deacetylation on CT gene expression, in vitro experiments were performed using HCT116 and Caco-2 cell lines. There was no detected expression of the genes neither in the patient samples nor in NC tissues, except for TEX48, which exhibited upregulation in CC samples compared to NC tissues in online datasets. Notably, CT genes showed expression in testis samples. In vitro, experiments demonstrated significant enhancement in mRNA expression levels of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 following treatment with 5-aza-2'-deoxycytidine and trichostatin A in HCT116 and Caco-2 cell lines. Epigenetic treatments modify the expression of CT genes, indicating that these genes can potentially be used as biomarkers for CC. The importance of conducting further research to understand and target epigenetic mechanisms to improve CC treatment cannot be overemphasized., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Almutairi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
12. Bisphenol A-induced ovarian damage countered by luteolin: Experiments in in vitro CHO cells and in vivo PCOS phenotype zebrafish.
- Author
-
Sudhakaran G, Kesavan D, Ranjan Nayak SPR, Madesh S, Meenatchi R, Pachaiappan R, Almutairi MH, Almutairi BO, and Arockiaraj J
- Abstract
Bisphenol-A (BPA) is a widely used chemical that can harm the human body, including the reproductive system. BPA accumulates in the body and is found in 95 % of individuals due to everyday exposure through food, water, and skin absorption. BPA can impair female fertility by interfering with ovarian folliculogenesis, inhibiting follicular growth, and inducing atresia, leading to polycystic ovary syndrome (PCOS). PCOS is a prevalent endocrine disorder that affects many reproductive-aged women. While current treatments can help manage symptoms, they do not entirely prevent complications. Luteolin, a natural flavonoid with medicinal properties, is commonly used to treat metabolic and inflammatory disorders. Therefore, we evaluated Luteolin's properties against PCOS in Network pharmacology and molecular docking studies; further, the antioxidant and anti-inflammatory properties in protecting the Chinese Hamster ovarian (CHO) cells from Reactive Oxygen Species, cellular damage, and negative mitochondrial membrane potential were evaluated. Additionally, an in-vivo PCOS-like model was developed using zebrafish, and the localization of Luteolin was identified using fluorescein isothiocyanate (FITC). Luteolin protected the CHO cells from cellular damage, ROS, and negative mitochondrial membrane potential. Luteolin alleviated the total SOD levels in the Zebrafish ovary, induced follicular maturation, and altered the key genes in ovarian proliferation and pro-inflammatory cytokines TNF-α and IL-1β expression. Natural Phyto-oxidants such as Luteolin may protect follicular development and early PCOS in adult zebrafish to prevent oxidative stress and inflammation. This study suggests using Luteolin as a phytomedicine to alleviate ovarian function decline., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
13. Protective Effect of Sulfur-Containing Heterocyclic Analogs Against Acrylamide-Induced Behavioral and Biochemical Alterations in Zebrafish.
- Author
-
Haridevamuthu B, Manjunathan T, Boopathi S, Almutairi MH, Almutairi BO, Kumar TTA, Guru A, Gopinath P, and Arockiaraj J
- Abstract
Acrylamide (ACR) is a water-soluble monomer with broad consumer applications, even in foods due to thermal processes. Acute exposure to ACR may lead to neurotoxic effects such as ataxia and skeletal muscle weakness in humans and experimental animals. Oxidative stress is the primary pathway in ACR toxicity; therefore, this study aimed to evaluate the possible protective effect of benzo[b]thiophene analogs as an antioxidant drug for ACR poisoning. For this purpose, adult zebrafish were chosen as the experimental model considering the 3Rs of research. Hydroxyl containing benzo[b]thiophene analogs, 1-(3-hydroxybenzo[b]thiophen-2-yl) ethanone (BP) and 1-(3-hydroxybenzo[b]thiophen-2-yl) propan-1-one hydrate (EP) were injected via intraperitoneal (i.p.) route at an effective dose of 5 mg/kg one hour before the exposure of ACR (0.75 mM) for three days. ACR fish showed aberrant socio-behavior with low exploration, tight circling, negative scototaxis, disrupted aggression, and tight shoaling. These results indicated depression comorbid and anxiety-like phenotype. BP and EP partially reduced the aberrant socio-behavior. BP and EP elevated the antioxidant defense and reduced the oxidative damage in the brain caused by ACR. Cellular and tissular alterations caused by ACR were visualized through histopathological study. BP and EP administration reduced and repaired the cellular changes via the antioxidant mechanism. BP and EP altered the axonal growth and regeneration gene and synaptic vesicle cycle gene expression necessary for neurotransmission. This combined gain-of-function of redox mechanism at molecular, cellular, and tissular levels explains the behavioral improvement at the organismal level of the organization., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
14. Indole-3-acetic acid induced cardiogenesis impairment in in-vivo zebrafish via oxidative stress and downregulation of cardiac morphogenic factors.
- Author
-
Nayak SPRR, Boopathi S, Almutairi BO, Arokiyaraj S, Kathiravan MK, and Arockiaraj J
- Subjects
- Animals, Heart drug effects, Apoptosis drug effects, Plant Growth Regulators toxicity, Lipid Peroxidation drug effects, Zebrafish Proteins genetics, Zebrafish Proteins metabolism, Zebrafish, Oxidative Stress drug effects, Indoleacetic Acids, Down-Regulation drug effects, Embryo, Nonmammalian drug effects
- Abstract
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Daidzein ameliorates nonmotor symptoms of manganese-induced Parkinsonism in zebrafish model: Behavioural and biochemical approach.
- Author
-
Haridevamuthu B, Sudhakaran G, Pachaiappan R, Kathiravan MK, Manikandan K, Almutairi MH, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Animals, Acetylcholinesterase metabolism, Dopamine metabolism, Oxidative Stress drug effects, Brain drug effects, Brain metabolism, Neuroprotective Agents pharmacology, Male, Anxiety drug therapy, Anxiety chemically induced, Social Behavior, Zebrafish, Isoflavones pharmacology, Isoflavones therapeutic use, Behavior, Animal drug effects, Manganese toxicity, Disease Models, Animal, Parkinsonian Disorders drug therapy, Parkinsonian Disorders chemically induced, Parkinsonian Disorders metabolism
- Abstract
Background and Purpose: Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism., Experimental Approach: Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ., Key Results: DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection., Conclusion and Implications: DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism., (© 2024 British Pharmacological Society.)
- Published
- 2024
- Full Text
- View/download PDF
16. Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish.
- Author
-
Kandaswamy K, Guru A, Panda SP, Antonyraj APM, Kari ZA, Giri J, Almutairi BO, Arokiyaraj S, Malafaia G, and Arockiaraj J
- Subjects
- Animals, Embryo, Nonmammalian drug effects, Nanoparticles toxicity, Microplastics toxicity, Drug Synergism, Zebrafish embryology, Diclofenac toxicity, Polystyrenes toxicity, Water Pollutants, Chemical toxicity, Embryonic Development drug effects, Oxidative Stress drug effects
- Abstract
In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1β expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. Ameliorative potential of eriocitrin against cadmium instigated hepatotoxicity in rats via regulating Nrf2/keap1 pathway.
- Author
-
Hayat MF, Zohaib M, Ijaz MU, Batool M, Ashraf A, Almutairi BO, and Atique U
- Subjects
- Animals, Rats, Male, Liver drug effects, Liver metabolism, Chemical and Drug Induced Liver Injury metabolism, Chemical and Drug Induced Liver Injury drug therapy, Oxidative Stress drug effects, Antioxidants pharmacology, Antioxidants metabolism, Rats, Wistar, Cadmium toxicity, NF-E2-Related Factor 2 metabolism, Kelch-Like ECH-Associated Protein 1 metabolism
- Abstract
Background: Cadmium (Cd) is a hazardous heavy metal that adversely affects the vital body organs particularly liver. Eriocitrin (ERCN) is a plant-based flavonoid that is well-known for its wide range of pharmacological potential. This research trial was aimed to determine the ameliorative potential of ERCN against Cd provoked hepatotoxicity in rats., Methodology: Twenty-four rats (Rattus norvegicus) were apportioned into control, Cd treated (5 mg/kg), Cd (5 mg/kg) + ERCN (25 mg/kg) and only ERCN (25 mg/kg) administrated group. Expressions of Nrf2/Keap1 pathway and apoptotic markers were assessed through qRT-PCR. The levels of inflammatory and liver function markers were evaluated by using standard ELISA kits., Key Findings: Cd exposure reduced the expression of Nrf2 and anti-oxidant genes as well as the activity of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione (GSH) contents while escalating the expression of Keap1. Furthermore, Cd intoxication augmented malondialdehyde (MDA) and reactive oxygen species (ROS) levels in hepatic tissues. Exposure to Cd resulted in a notable elevation in the levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST). Cd administration upregulated nuclear factor-kappa B (NF-κB), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels as well as cyclooxygenase-2 (COX-2) activity. Furthermore, Cd administration upsurged Bax and Caspase-3 expression while reducing the expression of Bcl-2. Moreover, Cd intoxication disrupted the normal architecture of hepatic tissues. However, supplementation of ERCN significantly (p < 0.05) ameliorated the aforementioned disruptions induced by Cd intoxication., Conclusion: ERCN treatment remarkably ameliorated the hepatic tissues owing to its antioxidant, anti-inflammatory, and anti-apoptotic potentials. These findings underscore the therapeutic potential of ERCN to counteract the adverse effects of environmental pollutants on hepatic tissues., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier GmbH. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
18. Cadmium and ketoprofen accumulation influences aquatic ecosystem demonstrated using in-vivo zebrafish model.
- Author
-
Madesh S, Sudhakaran G, Ramamurthy K, Kathiravan MK, Almutairi MH, Almutairi BO, Arokiyaraj S, Guru A, and Arockiaraj J
- Abstract
The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.
- Published
- 2024
- Full Text
- View/download PDF
19. Rhodamine B, an organic environmental pollutant induces reproductive toxicity in parental and teratogenicity in F1 generation in vivo.
- Author
-
Priya PS, Pratiksha Nandhini P, Vaishnavi S, Pavithra V, Almutairi MH, Almutairi BO, Arokiyaraj S, Pachaiappan R, and Arockiaraj J
- Subjects
- Male, Animals, Female, Acetylcholinesterase metabolism, Reproduction, Gonads, Zebrafish metabolism, Water Pollutants, Chemical metabolism, Rhodamines
- Abstract
This study investigated the reproductive toxicity of rhodamine B in zebrafish and its transgenerational effects on the F1 generation. In silico toxicity predictions revealed high toxicity of rhodamine B, mainly targeting pathways associated with the reproductive and endocrine systems. In vivo experiments on zebrafish demonstrated that rhodamine B exposure at a concentration of 1.5 mg/L led to significant impairments in fecundity parameters, particularly affecting females. Histopathological analysis revealed distinct changes in reproductive organs, further confirming the reproductive toxicity of rhodamine B, with females being more susceptible than males. Gene expression studies indicated significant suppression of genes crucial for ovulation in rhodamine B-treated female fish, highlighting hormonal imbalance as a potential mechanism of reproductive toxicity. Furthermore, bioaccumulation studies showed the presence of rhodamine B in both adult fish gonads and F1 generation samples, suggesting transgenerational transfer of the dye. Embryotoxicity studies on F1 generation larvae demonstrated reduced survival rates, lower hatching rates, and increased malformations in groups exposed to rhodamine B. Moreover, rhodamine B induced oxidative stress in F1 generation larvae, as evidenced by elevated levels of reactive oxygen species and altered antioxidant enzyme activity. Neurotoxicity assessments revealed reduced acetylcholinesterase activity, indicating potential neurological impairments in F1 generation larvae. Additionally, locomotory defects and skeletal abnormalities were observed in F1 generation larvae exposed to rhodamine B. This study provides comprehensive evidence of the reproductive toxicity of rhodamine B in adult zebrafish and its transgenerational effects on the F1 generation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
20. Identification of novel CA IX inhibitor: Pharmacophore modeling, docking, DFT, and dynamic simulation.
- Author
-
Packiapalavesam SD, Saravanan V, Mahajan AA, Almutairi MH, Almutairi BO, Arockiaraj J, Kathiravan MK, and Karthick Raja Namasivayam S
- Subjects
- Humans, Ligands, Molecular Structure, Pharmacophore, Antigens, Neoplasm metabolism, Antigens, Neoplasm chemistry, Carbonic Anhydrase Inhibitors chemistry, Carbonic Anhydrase Inhibitors pharmacology, Density Functional Theory, Molecular Docking Simulation, Molecular Dynamics Simulation
- Abstract
Human Carbonic anhydrase IX (hCA IX) is found to be an essential biomarker for the treatment of hypoxic tumors in both the early and metastatic stages of cancer. Due to its active function in maintaining pH levels and overexpression in hypoxic conditions, hCA IX inhibitors can be a potential candidate specifically designed to target cancer development at various stages. In search of selective hCA IX inhibitors, we developed a pharmacophore model from the existing natural product inhibitors with IC
50 values less than 50 nm. The identified hit molecules were then investigated on protein-ligand interactions using molecular docking experiments followed by molecular dynamics simulations. Among the zinc database 186 hits with an RMSD value less than 1 were obtained, indicating good contact with key residues HIS94, HIS96, HIS119, THR199, and ZN301 required for optimum activity. The top three compounds were subjected to molecular dynamics simulations for 100 ns to know the protein-ligand complex stability. Based on the obtained MD simulation results, binding free energies are calculated. Density Functional Theory (DFT) studies confirmed the energy variation between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). The current study has led to the discovery of lead compounds that show considerable promise as hCA IX inhibitors and suggests that three compounds with special molecular features are more likely to be better-inhibiting hCA IX. Compound S35, characterized by a higher stability margin and a smaller energy gap in quantum studies, is an ideal candidate for selective inhibition of CA IX., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
21. Tanshinone IIA from Salvia miltiorrhiza alleviates follicular maturation arrest symptoms in zebrafish via binding to the human androgen receptors and modulating Tox3 and Dennd1a.
- Author
-
Priyanka GCL, Mahalakshmi NC, Almutairi MH, Almutairi BO, Sudhakaran G, Premkumar B, and Arockiaraj J
- Subjects
- Animals, Humans, Female, Molecular Docking Simulation, Zebrafish Proteins metabolism, Signal Transduction drug effects, Protein Binding drug effects, Zebrafish, Abietanes pharmacology, Receptors, Androgen metabolism, Salvia miltiorrhiza chemistry, Polycystic Ovary Syndrome drug therapy, Polycystic Ovary Syndrome metabolism, Polycystic Ovary Syndrome pathology, Ovarian Follicle drug effects, Ovarian Follicle metabolism, Ovarian Follicle pathology
- Abstract
Follicular maturation arrest is a prevalent endocrine disorder characterized by hormonal imbalance, ovarian dysfunction, and metabolic disturbances leading to Polycystic ovarian syndrome (PCOS). Tanshinone IIA (TIIA), a bioactive compound derived from Salvia miltiorrhiza, has shown promising therapeutic potential in various diseases, including cardiovascular diseases and cancer. However, its effects on reproductive health and gynecological disorders, particularly PCOS, remain poorly understood. In this study, we investigated the potential therapeutic effects of TIIA on ovarian function. Using a combination of experimental and computational approaches, we elucidated the molecular mechanisms underlying TIIA's pharmacological impact on ovarian function, follicular development, and androgen receptor signaling. Molecular docking and dynamics simulations revealed that TIIA interacts with the human androgen receptor (HAR), modulating its activity and downstream signaling pathways. Our results demonstrate that TIIA treatment alleviates PCOS-like symptoms in a zebrafish model, including improved follicular development, lowered GSI index, improved antioxidant status (SOD, CAT), decreased LDH levels, and enhanced AChE levels by regulating Tox3 and Dennd1a pathway. Our findings suggest that TIIA may hold promise as a novel therapeutic agent for the management of PCOS or ovulation induction., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
22. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo.
- Author
-
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, and Arockiaraj J
- Subjects
- Humans, Animals, Female, Ecosystem, Benzhydryl Compounds toxicity, Benzhydryl Compounds metabolism, Oxidative Stress, Hepatocytes, Cadmium toxicity, Cadmium metabolism, Zebrafish physiology, Phenols
- Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
23. Developing new Hydrazine Carbothioamide Molecules for Selective Colorimetric/Fluorometric Detection of Environmentally Essential Hg 2+ and Ag + Metal Ions in Mixed Aqueous Media.
- Author
-
Palanisamy J, Almutairi MH, and Almutairi BO
- Abstract
A novel colorimetric and fluorogenic probe L based on hydrazine carbothioamide and 1,8-naphthalimide moieties has been designed and synthesized for the hypersensitive detection of Hg
2+ or Ag+ ions. The observed probe L showed colorimetric and fluorometric responses for these studies when Hg2+ or Ag+ was added to the DMSO - HEPES buffer solution (pH = 7). An interference test with other metal ions was determined, and the high selectivity of Hg2+ and Ag+ did not interfere with other metal ions in colorimetric and fluorogenic methods. The possible mechanism of binding of these metal ions and the probe L 1:1 complex was determined by H1 NMR. Additionally, the reversibility of the affinity of probe L with mercury (Hg2+) and silver (Ag+ ) ions was investigated by adding Na2 EDTA. The naked eye detected the "Off-On" type fluorescence sensor in the presence of Hg2+ and EDTA. The tested test strip kits provided a strong probability of probe L with high response and rapid, sensitive detection with Hg2+ ion, which may be suitable for practical use., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
24. Indole-3 acetic acid induced cardiac hypertrophy in Wistar albino rats.
- Author
-
Nayak SPRR, Boopathi S, Chandrasekar M, Yamini B, Chitra V, Almutairi BO, Arokiyaraj S, Guru A, and Arockiaraj J
- Subjects
- Animals, Male, Rats, Oxidative Stress drug effects, Myocardium metabolism, Myocardium pathology, Biomarkers blood, Lipid Peroxidation drug effects, Cardiotoxicity, Rats, Wistar, Indoleacetic Acids, Cardiomegaly chemically induced, Cardiomegaly pathology
- Abstract
Indole-3-acetic acid (IAA) is the most widely utilized plant growth regulator. Despite its extensive usage, IAA is often overlooked as an environmental pollutant. Due to its protein-binding nature, it also functions as a uremic toxin, contributing to its association with chronic kidney disease (CKD). While in vitro and epidemiological research have demonstrated this association, the precise impact of IAA on cardiovascular disease in animal models is unknown. The main objective of this study is to conduct a mechanistic analysis of the cardiotoxic effects caused by IAA using male Wistar albino rats as the experimental model. Three different concentrations of IAA (125, 250, 500 mg/kg) were administered for 28 days. The circulating IAA concentration mimicked previously observed levels in CKD patients. The administration of IAA led to a notable augmentation in heart size and heart-to-body weight ratio, indicating cardiac hypertrophy. Echocardiographic assessments supported these observations, revealing myocardial thickening. Biochemical and gene expression analyses further corroborated the cardiotoxic effects of IAA. Dyslipidemia, increased serum c-Troponin-I levels, decreased SOD and CAT levels, and elevated lipid peroxidation in cardiac tissue were identified. Moreover, increased expression of cardiac inflammatory biomarkers, including ANP, BNP, β-MHC, Col-III, TNF-α, and NF-κB, was also found in the IAA-treated animals. Histopathological analysis confirmed the cardiotoxic nature of IAA, providing additional evidence of its adverse effects on cardiovascular health. These results offer insights into the potential negative impact of IAA on cardiovascular function, and elucidating the underlying mechanisms of its cardiotoxicity., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
25. Neuroprotective potential of pyrazole benzenesulfonamide derivative T1 in targeted intervention against PTZ-induced epilepsy-like condition in in vivo zebrafish model.
- Author
-
Murugan R, Ramya Ranjan Nayak SP, Haridevamuthu B, Priya D, Chitra V, Almutairi BO, Arokiyaraj S, Saravanan M, Kathiravan MK, and Arockiaraj J
- Subjects
- Animals, Humans, Zebrafish, Benzenesulfonamides, Cyclooxygenase 2 genetics, Cyclooxygenase 2 metabolism, Pyrazoles pharmacology, Pyrazoles therapeutic use, Disease Models, Animal, Pentylenetetrazole, Epilepsy chemically induced, Epilepsy drug therapy, Epilepsy metabolism
- Abstract
Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 μM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
26. Sustainable food packaging: Harnessing biowaste of Terminalia catappa L. for chitosan-based biodegradable active films for shrimp storage.
- Author
-
Haridevamuthu B, Raj D, Chandran A, Murugan R, Seetharaman S, Dhanaraj M, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Food Packaging methods, Meat, Seafood, Chitosan chemistry, Terminalia
- Abstract
Shrimp, a globally consumed perishable food, faces rapid deterioration during storage and marketing, causing nutritional and economic losses. With a rising environmental consciousness regarding conventional plastic packaging, consumers seek sustainable options. Utilizing natural waste resources for packaging films strengthens the food industry. In this context, we aim to create chitosan-based active films by incorporating Terminalia catappa L. leaves extract (TCE) to enhance barrier properties and extend shrimp shelf life under refrigeration. Incorporation of TCE improves mechanical, microstructural, UV, and moisture barrier properties of the chitosan film due to cross-linking interactions, resulting in robust, foldable packaging film. Active TCE film exhibits high antioxidant property due to polyphenols. These films also exhibited low wettability and showed hydrophobicity than neat CH films which is essential for meat packaging. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. TCE-loaded films effectively control spoilage organisms, prevent biochemical spoilage, and maintain shrimp freshness compared to neat CH films during refrigerated condition. The active TCE film retains sensory attributes better than neat chitosan, aligning with consumer preference. The developed edible and active film from waste sources might offer sustainable, alternative packaging material with a lower carbon footprint than petroleum-based sources., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
27. Exploring the Efficacy of Pellitorine as an Antiparasitic Agent Against Argulus: Impacts on Antioxidant Levels and Immune Responses in Goldfish (Carassius auratus).
- Author
-
Boopathi S, Kesavan D, Sudhakaran G, Priya PS, Haridevamuthu B, Dhanaraj M, Seetharaman S, Almutairi BO, Arokiyaraj S, Guru A, and Arockiaraj J
- Subjects
- Animals, Polyunsaturated Alkamides pharmacology, Reactive Oxygen Species metabolism, Catalase metabolism, Superoxide Dismutase metabolism, Goldfish parasitology, Arguloida drug effects, Fish Diseases parasitology, Fish Diseases drug therapy, Antioxidants pharmacology, Antiparasitic Agents pharmacology, Fatty Acids, Unsaturated
- Abstract
Introduction: Argulus spp. infestation is a significant challenge for aquaculture, currently, there are no approved medications available to efficiently manage this parasite. Consequently, mechanical removal of parasites using forceps and natural substances like herbs are being explored as alternative treatment methods. Pellitorine (PLE) is a naturally occurring compound found in several plant species. It is classified as an alkaloid and belongs to the class of compounds known as amides., Materials and Methods: This study aimed to evaluate the effectiveness of PLE in preventing Argulus spp. infestations in goldfish (Carassius auratus) and to determine the optimal dosage of PLE for the detachment of Argulus spp., Results: The findings of this study revealed that PLE enhanced the immune response of goldfish by promoting superoxide dismutase (SOD) and catalase (CAT) in Argulus-infected goldfish. Additionally, PLE induces reactive oxygen species (ROS) generation and cellular damage in the Argulus. PLE at a dosage of 5 mg/mL was able to detach 80% of the argulus from goldfish within 12 h. Therapeutic index was found to be 5.99, suggesting that PLE is the safest drug., Conclusions: Therefore, our findings suggest that PLE can be a suitable and effective treatment option for preventing Argulus infestations in goldfish. The results of this study can guide the use of PLE at an optimal dosage to control Argulus infestation in goldfish., (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Published
- 2024
- Full Text
- View/download PDF
28. Application of Bacillus Coagulans as Paraprobiotic Against Acute Hepatopancreatic Necrosis Disease in Shrimp.
- Author
-
Priya PS, Pavithra V, Vaishnavi S, Almutairi BO, Arokiyaraj S, Dhanaraj M, Seetharaman S, and Arockiaraj J
- Abstract
Paraprobiotics, known as non-viable or ghost probiotics, have attracted attention for their benefits over live microbial cells. This study was designed to investigate the paraprobiotic effects of heat-killed Bacillus coagulans on the white leg shrimp Litopenaeus vannamei. The paraprobiotic formulation was prepared in three different concentrations including B. coagulans 1 (10
7 cells g-1 diet), B. coagulans 2 (108 cells g-1 diet), and B. coagulans 3 (109 cells g-1 diet) through heat inactivation method. Preliminary toxicity assessments revealed that post-larvae shrimps (mean weight ± SE: 0.025 ± 0.007 g) treated with B. coagulans 1, 2 and 3 paraprobiotic formulations exhibited no mortality, confirming the non-toxic nature of the formulated diet. In a 90-day feeding trial involving juvenile shrimps (mean weight ± SE: 0.64 ± 0.05 g), growth parameters and feed conversion ratios improved in all experimental groups. Subsequently, these shrimps were challenged with Vibrio parahaemolyticus, revealing that paraprobiotic-fed shrimps exhibited significant survival rate improvements. Oxidative stress-related enzyme activities, such as superoxide dismutase and catalase, increased in paraprobiotic-fed shrimps post-Vibrio challenge, while the challenged control group showed decreased activity (p < 0.001). Nitric oxide levels are also increased in paraprobiotic-treated shrimp, with B. coagulans 3 showing a significant rise in nitric oxide activity (p < 0.001). This study further demonstrated the positive impact of paraprobiotic treatment on digestive enzymes, immune-related parameters (e.g., total hemocyte count, prophenoloxidase, and respiratory burst activity), and overall disease resistance. These findings suggest that B. coagulans paraprobiotics have the potential to enhance antioxidant, antibacterial, and immune-related responses in L. vannamei, making them a valuable addition to shrimp aquaculture., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
29. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos.
- Author
-
Haridevamuthu B, Murugan R, Seenivasan B, Meenatchi R, Pachaiappan R, Almutairi BO, Arokiyaraj S, M K K, and Arockiaraj J
- Subjects
- Animals, Humans, Zebrafish metabolism, Azo Compounds metabolism, Oxidative Stress, Apoptosis, Mitochondria, Embryo, Nonmammalian, Tartrazine toxicity, Antioxidants metabolism
- Abstract
Tartrazine (TZ), or E 102 or C Yellow, is a commonly used azo dye in the food and dyeing industries. Its excessive usage beyond permissible levels threatens human health and the aquatic environment. While previous studies have reported adverse effects such as mutagenicity, carcinogenicity, and reproductive toxicity. Our study aimed to comprehensively evaluate the developmental neurotoxicity of TZ exposure via biochemical and behavioral examinations and explored the underlying mechanism via gene expression analyses. TZ at an environmentally relevant concentration (50 mg/L) significantly induces oxidative stress, altered antioxidant (SOD, CAT and GSH) response, triggered cellular damage (MDA and LDH), and induced neuro-biochemical changes (AChE and NO). Gene expression analyses revealed broad disruptions in genes associated with antioxidant defense (sod1, cat, and gstp1), mitochondrial dysfunction (mfn2, opa1, and fis1),evoked inflammatory response (nfkb, tnfa, and il1b), apoptosis activation (bcl2, bax, and p53), and neural development (bdnf, mbp, and syn2a). Behavioral analysis indicated altered thigmotaxis, touch response, and locomotion depending on the concentration of TZ exposure. Remarkably, the observed effective concentrations were consistent with the permitted levels in food products, highlighting the neurodevelopmental effects of TZ at environmentally relevant concentrations. These findings provide valuable insights into the underlying molecular mechanisms, particularly the role of mitochondria-mediated apoptosis, contributing to TZ-induced neurodevelopmental disorders in vivo., Competing Interests: Competing interest The authors have no relevant financial or non-financial interests to disclose., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
30. Association of the Genetic Diversity of Killer Cell Immunoglobulin-like Receptor Genes and HLA-C Ligand in Saudi Women With Thyroid Cancer.
- Author
-
Altalhi RA, Aljuaimlani A, Alswayyed M, Arafah M, Tashkandy Y, Almutairi BO, Mansour L, and Alomar SY
- Subjects
- Humans, Female, Saudi Arabia epidemiology, Retrospective Studies, Adult, Middle Aged, Genetic Variation, Ligands, Case-Control Studies, Polymorphism, Genetic, Receptors, KIR genetics, HLA-C Antigens genetics, Genetic Predisposition to Disease, Thyroid Neoplasms genetics, Thyroid Neoplasms immunology, Genotype
- Abstract
Introduction: Genetic diversity in the killer immunoglobulin-like receptor (KIR) gene composition and human leukocyte antigen (HLA) class I ligands, such as HLA-C, can affect the activity of natural killer cells and determine anti-cancer immunity. Specific KIR-HLA combinations can enhance cancer predisposition by promoting immune evasion. Studying the relationship between KIR-HLA polymorphisms and thyroid cancer (TC) risk can offer insights into how natural immunity fails, leading to disease development. Therefore, we investigated the association between KIR and HLA-C genotypes and TC risk in Saudi women., Methods: In this retrospective study, sixteen KIR genotypes and 2 HLA-C allotypes were determined using the polymerase chain reaction-sequence-specific primer (PCR-SSP) method, and the genotypes of 50 Saudi female patients with TC were compared with those of 50 Saudi female healthy controls (HC)., Results: We observed a highly significant decrease in the presence of the KIR2DS2 and KIR2DS4 genes (OR = 0.15, 95% CI = 0.05-0.41, P = 0.0001; OR = 0.06, 95% CI = 0.02-0.2, P = 0.000, respectively) and in the presence of the KIR2DL5A gene (OR = 0.05, 95% CI = 0.02-0.14, P = 0.0000) in the TC group compared to the HC group. The frequency of the HLA-C2C2 allotype was significantly higher in HC compared to patients with TC ( P = 0.02). The KIR haplotype group A and AB genotypes revealed a protective effect against TC ( P = 0.0003 and P = 0.000, respectively), while the BB genotype showed a risk effect on TC compared to HC. Our results showed significant differences in the KIR gene combinations and KIR-HLA combinations between Saudi female TC patients and HC., Conclusion: These results suggest that the expression of KIR genes and their HLA-C ligands may influence the risk of TC development in Saudi women., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
31. Amentoflavone mediated hepatoprotection to counteract paraquat instigated hepatotoxicity via modulating Nrf2/keap1 pathway: A biochemical, inflammatory, apoptotic and histopathological study.
- Author
-
Ijaz MU, Ghafoor N, Hayat MF, Almutairi BO, and Atique U
- Subjects
- Rats, Animals, Kelch-Like ECH-Associated Protein 1 metabolism, NF-E2-Related Factor 2 metabolism, Antioxidants pharmacology, Oxidative Stress, Glutathione metabolism, NF-kappa B metabolism, Anti-Inflammatory Agents pharmacology, Paraquat toxicity, Chemical and Drug Induced Liver Injury drug therapy, Chemical and Drug Induced Liver Injury prevention & control, Biflavonoids
- Abstract
Paraquat (PQ) is a ubiquitous and water-soluble herbicide which has potential to cause systematic poisoning. PQ intoxication is known to be associated with various clinical complications including hepatotoxicity. Amentoflavone (AMF) is an active phenolic compound that exhibits a broad range of biological as well as pharmacological activities. This study was designed to determine the hepato-protective potential of AMF against PQ instigated hepatotoxicity in rats. Forty-eight rats were distributed into four groups such as control group, PQ-treated group (5 mg/kg), PQ (5 mg/kg) + AMF (40 mg/kg) exposed group and AMF (40 mg/kg) only supplemented group. It was revealed that PQ exposure reduced nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidative genes expression whereas increase the expression of Kelch-like ECH-associated protein 1(Keap1). Besides, PQ intoxication reduced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSR), glutathione peroxidase (GPx), Heme- oxygenase-1 (HO-1) & glutathione (GSH) content. Furthermore, the levels of reactive oxygen species (ROS) & malondialdehyde (MDA) were increased. In addition, PQ significantly increased the hepatic serum enzymes including alkaline phosphatase (ALP), aspartate transaminase (AST), & alanine transaminase (ALT) along with inflammatory biomarkers levels such as tumor necrosis- α (TNF- α), nuclear factor- κB (NF-κB), interleukin-6 (IL-6), interleukin 1beta (IL-1β), & cyclo‑oxygenase-2 (COX-2) activity. PQ intoxication increased the expressions of pro-apoptotic markers i.e., Bcl-2-associated X protein (Bax) & Cysteine-aspartic protease-3 (Caspase-3) while reducing the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Furthermore, PQ intoxication prompted various histopathological impairments. However, the co-administration of AMF significantly improved the abovementioned hepatic damages induced by PQ. The present study indicated that AMF may be an effective therapeutic candidate to mitigate PQ provoked hepatic impairments due to its anti-apoptotic, antioxidant & anti-inflammatory properties., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
32. Impact of butylparaben on β-cell damage and insulin/PEPCK expression in zebrafish larvae: Protective effects of morin.
- Author
-
Singh M, Guru A, Pachaiappan R, Almutairi BO, Arokiyaraj S, Gopi M, and Arockiaraj J
- Subjects
- Animals, Humans, Larva, Antioxidants pharmacology, Oxidative Stress, Flavonoids pharmacology, Flavonoids therapeutic use, Zebrafish, Insulin, Parabens, Flavones
- Abstract
Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in β-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in β-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident β-cell damage. However, the pretreatment with morin showed promising effects by promoting β-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced β-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic β-cells., (© 2023 Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
33. Synthesis of Plant-Mediated Iron Oxide Nanoparticles and Optimization of Chemically Modified Activated Carbon Adsorbents for Removal of As, Pb, and Cd Ions from Wastewater.
- Author
-
Rehman A, Naeem A, Ahmad I, Fozia F, Almutairi MH, Aslam M, Israr M, Almutairi BO, and Ullah Z
- Abstract
This research study was designed with the aim to prepare plant extract-mediated iron oxide nanoparticles (IONPs) and different chemically modified carbon adsorbents from the Parthenium hysterophorus plant and then optimize the carbon adsorbents by evaluating their adsorption applications in wastewater for the selected metal ions like arsenic (As
3+ ), lead (Pb2+ ), and cadmium (Cd2+ ). The Fourier transform infrared spectroscopy (FTIR) technique was used to highlight functional groups in plant-mediated IONPs and chemically modified carbon adsorbents. A scanning electron microscopy study was conducted to explain the surface morphology of the adsorbents. Energy-dispersive X-rays was used for elemental analysis and X-ray diffraction for particle size and crystallinity of the adsorbents. From the study, it was found that the best optimum conditions were pH = 5-6, initial concentration of adsorbate of 10 mg/L, dose of adsorbent of 0.01 g, contact time of 90-120 min of adsorbent and adsorbate, and temperature of 25 °C. At optimum conditions, the adsorption capacities of IONPs for arsenic (As) 144.7 mg/g, lead (Pb) 128.01 mg/g, and cadmium (Cd) ions 122.1 mg/g were recorded. The activated carbon at optimum conditions showed adsorption capacities of 46.35 mg/g for As, 121.95 mg/g for Pb, and 113.25 mg/g for Cd ion. At equilibrium, Langmuir, Freundlich Temkin, and Dubinin-Radushkevich isotherms were applied on the experimental adsorption data having the best R2 values (0.973-0.999) by the Langmuir isotherm. High-correlation coefficient R2 values (0.996-0.999) were obtained from the pseudo-second-order for all cases, showing that the adsorption process proceeds through pseudo second-order kinetics. The apparent adsorption energy E value was in the range of 0.24-2.36 kJ/mol. The adsorption capacity of regenerated IONPs for As gradually decreased from 144.8 to 45.67 mg/g, for lead 128.15 to 41.65 mg/g, and cadmium from 122.10 to 31.20 mg/g in 5 consecutive cycles. The study showed that the synthesized IONPs and acid-activated carbon adsorbent were successfully used to remove selected metal ions from wastewater., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)- Published
- 2023
- Full Text
- View/download PDF
34. Brain targeted luteolin-graphene oxide nanoparticle abrogates polyethylene terephthalate induced altered neurological response in zebrafish.
- Author
-
Guru A, Murugan R, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Animals, Humans, Luteolin pharmacology, Polyethylene Terephthalates pharmacology, Oxidative Stress, Brain, Zebrafish, Nanoparticles toxicity
- Abstract
Background: Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles., Methods and Results: Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity., Conclusions: In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish., (© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2023
- Full Text
- View/download PDF
35. Methylenetetrahydrofolate reductase polymorphisms in dental caries-induced pulp inflammation and regeneration of dentine-pulp complex: Future perspectives.
- Author
-
Uma Maheswari G, Yamini B, Dhandapani VE, Almutairi BO, Arokiyaraj S, and Karuppiah KM
- Abstract
Dental caries (DC)-induced pulp infections usually undergo the common endodontic treatment, root canal therapy (RCT). Endodontically treated teeth are devitalized, become brittle and susceptible for re-infection which eventually results in dental loss. These complications arise because the devitalized pulp losses its ability for innate homeostasis, repair and regeneration. Therefore, restoring the vitality, structure and function of the inflamed pulp and compromised dentin have become the focal points in regenerative endodontics. There are very few evidences, so far, that connect methylenetetrahydrofolate reductase single nucleotide polymorphisms (MTHFR-SNPs) and dental disorders. However, the primary consequences of MTHFR-SNPs, in terms of excessive homocysteine and folate deficiency, are well-known contributors to dental diseases. This article identifies the possible mechanisms by which MTHFR-SNP-carriers are susceptible for DC-induced pulp inflammation (PI); and discusses a cell-homing based strategy for in vivo transplantation in an orthotopic model to regenerate the functional dentine-pulp complex which includes dentinogenesis, neurogenesis and vasculogenesis, in the SNP-carriers., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 King Saud University.)
- Published
- 2023
- Full Text
- View/download PDF
36. Green Lead Nanoparticles Induced Apoptosis and Cytotoxicity in MDA-MB-231 Cells by Inducing Reactive Oxygen Species and Caspase 3/7 Enzymes.
- Author
-
Alsulami WL, Ali D, Almutairi BO, Yaseen KN, Alkahtani S, Almeer RA, and Alarifi S
- Abstract
Nanoparticles are widely used in the pharmaceutical, agriculture, and food processing industries. In this study, we have synthesized green lead nanoparticles (gPbNPs) by using an extract of Ziziphus spina-christi leaves and determined their cytotoxic and apoptotic effect on the human breast cancer MDA-MB-231 cell line. gPbNPs were characterized by using X-ray diffraction (XRD), energy dispersive X-ray (EDX) scanning electron microscope (SEM), and transmission electron microscope (TEM). The toxicity of gPbNPs was determined on the MDA-MB-231 cell line using MTT and NRU assays and as a result cell viability was reduced in a concentration-dependent manner. MDA-MB-231 cells were more sensitive at the highest concentration of gPbNPs exposure. In this experiment, we observed the production of intracellular ROS in cells, and induction of caspase 3/7 was higher in cells at 42 µg/ml of gPbNPs. Moreover, the Bax gene was upregulated and the Bcl-2 gene was downregulated and increased caspase 3/7 activity confirmed the apoptotic effect of gPbNPs in cells. Our observation showed that gPbNPs induced cell toxicity, increased generation of intracellular ROS, and gene expression of Bcl-2 and Bax in the MDA-MB-231 cell line. In conclusion, these findings demonstrated that gPbNPs executed toxic effects on the MDA-MB-231 cell line through activating caspase 3/7 activity., Competing Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
37. Unveiling nanotubes-mediated communication: Enterococcus faecalis countering Salmonella ser. Typhi - In vitro and In vivo insights.
- Author
-
Boopathi S, Priya PS, Kesavan D, Meenatchi R, Murugan R, Sudhakaran G, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Animals, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents metabolism, Gram-Negative Bacteria, Gram-Positive Bacteria, Salmonella typhi, Bacteria, Communication, Enterococcus faecalis metabolism, Zebrafish
- Abstract
Bacteria communicate with each other through contact-dependent and contact-independent mechanisms. While certain contact-dependent mechanisms, such as Type IV and Type VI, have received considerable attention, nanotubes-mediated communication among gut bacteria remains largely unknown. The purpose of this study is to demonstrate the presence of nanotube production in both gut commensal and gut pathogenic bacteria. And also aims to show how Enterococcus faecalis utilizes nanotubes to combat Salmonella ser. Typhi (S. Typhi), a pathogen in the gut. The research findings suggest that the formation of nanotubes is an inherent trait observed in both Gram-positive and Gram-negative bacteria. Interestingly, bacteria generate nanotubes in dynamic environments, biofilms, and even within the gut of zebrafish. These nanotubes develops over time in accordance with the duration of incubation. Furthermore, E. faecalis effectively combats S. Typhi through mechanisms that depend on physical contact rather than indirect methods. Notably, E. faecalis protects zebrafish larvae from S. Typhi infections by reducing reactive oxygen species and cell death, and concurrently boosting the production of antioxidant enzymes. It is hypothesized that E. faecalis might eliminate S. Typhi by transferring toxic metabolites into the pathogen via nanotubes. Gene expression analysis highlights that proinflammatory markers such as TNF-α, IL-1β, and IL-6 are elevated in Salmonella-infected larvae. However, co-treatment with E. faecalis counters this effect. Findings of this study underscores the significance of nanotubes as a vital machinery for bacterial communication and distribution of virulence factors. Exploring nanotubes-mediated communication at a molecular level could pave the way for innovative therapeutic interventions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
38. Role of individual and combined impact of simvastatin and α-TCP in rat calvarial bone defect: An experimental study.
- Author
-
Sugumaran S, Selvam D, Nivedhitha MS, Ganesh Mohanraj K, Almutairi BO, Arokiyaraj S, Guru A, and Arockiaraj J
- Abstract
Background: Bone substitutes have been used by doctors for a long time to treat osseous abnormalities. Recently, scientists have been searching for suitable materials to replace bone. Autogenous bone grafts are considered the gold standard for osseous regeneration. However, the limited availability of intraoral sources for grafting material often requires the use of secondary donor sites., Aim: This study aims to compare a control group of standard critical bone defect models treated without any bone transplants to critical size calvarial bony defects treated with various bone replacements, including simvastatin and α-tricalcium phosphate, while analyzing the healing patterns., Materials and Methods: In this investigation, 24 Wistar Albino rats weighing 200-250 g were utilized. The study included four groups, each consisting of six rats. Group I utilized deproteinized bovine xenograft, Group II used Simvastatin (0.1 mg), Group III used Simvastatin (0.1 mg) plus TCP, and Group IV served as the untreated calvarial defects group. After eight weeks of testing, the rats were euthanized, and the calvaria were extracted, decalcified in 20% formic acid, and prepared for histological analysis., Results: The newly produced osseous tissue consisted of woven and lamellar bone, which was observed in all deformities. The mean widths of new bone development in the SIMV with α-TCP (Group III) group after XENO (Group I) and the control group with no graft implantation were 160.33 ± 16.2 µm, 110.59 ± 11.5 µm, and 50.83 ± 5.5 µm, respectively. However, these differences did not show statistical significance (p > 0.05)., Conclusions: The quantity and quality of newly produced osseous tissue were comparable in α-TCP with SIMV and XENO. However, inflammatory infiltration was 8more pronounced in regions where SIMV was present alone compared to the combination group., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 King Saud University.)
- Published
- 2023
- Full Text
- View/download PDF
39. Furan based synthetic chalcone derivative functions against gut inflammation and oxidative stress demonstrated in in-vivo zebrafish model.
- Author
-
Nayak SPRR, Dhivya LS, R R, Almutairi BO, Arokiyaraj S, Kathiravan MK, and Arockiaraj J
- Subjects
- Animals, Antioxidants therapeutic use, Zebrafish metabolism, Oxidative Stress, Inflammation drug therapy, Anti-Inflammatory Agents adverse effects, Dextran Sulfate adverse effects, Colitis chemically induced, Colitis drug therapy, Colitis pathology, Chalcone pharmacology, Chalcones pharmacology, Inflammatory Bowel Diseases
- Abstract
Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1β, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
40. Luteolin photo-protects zebrafish from environmental stressor ultraviolet radiation (UVB).
- Author
-
Sudhakaran G, Selvam M, Sreekutty AR, Chandran A, Almutairi BO, Arokiyaraj S, Raman P, Guru A, and Arockiaraj J
- Subjects
- Adult, Animals, Humans, Reactive Oxygen Species, Vascular Endothelial Growth Factor A, Zebrafish, Cytokines, Glutathione, Larva, Ultraviolet Rays adverse effects, Luteolin pharmacology
- Abstract
Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm
2 . Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1β and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.- Published
- 2023
- Full Text
- View/download PDF
41. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans .
- Author
-
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, and Arockiaraj J
- Subjects
- Animals, Zebrafish, Fungi, Peptides, Virulence Factors, Aphanomyces genetics
- Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans , which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa , wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule., Competing Interests: The authors declare no conflicts of interest.
- Published
- 2023
- Full Text
- View/download PDF
42. Revolutionizing Nanotechnology with Filago desertorum Extracts: Biogenic Synthesis of Silver Nanoparticles Exhibiting Potent Antioxidant and Antibacterial Activities.
- Author
-
Abida A, Almutairi MH, Mushtaq N, Ahmed M, Sher N, Fozia F, Ahmad I, Almutairi BO, and Ullah Z
- Abstract
In this study, we described the environmentally friendly biosynthesis of silver nanoparticles (AgNPs) utilizing ethanolic extract of Filago desertorum ( F. desertorum ) as a capping and reducing agent. We also looked at the antioxidant and antibacterial capacities of AgNPs. In order to determine the size, shape, and crystallinity of the created AgNPs, the current project was designed to produce AgNPs utilizing the crude extract of the F. desertorum . The effectiveness of the project was evaluated by UV-visible spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. AgNPs are monodispersed and spherical and have 50 nm average particle diameters, as determined using Image J software calculations and SEM observation. Four significant peaks from an XRD study, located at 38.46, 44.63, 64.81, and 77.74 nm, were used to calculate the average crystalline size of AgNPs which was reported to be 15 nm. In the crude extract of F. desertorum , it is possible to see the functional group peaks of a number of substances that are essential for bioreduction and the stability of the AgNPs. Antibacterial and antioxidant properties of AgNPs in vitro (DPPH, ABTS, H2O2, phosphomolybdenum, and ferric reducing power) were examined using conventional methods. The AgNPs showed maximum DPPH (72.51% with IC50 = 144.61 μg/mL), ABTS (75.24% with IC50 = 131.21 μg/mL), hydrogen peroxide (73.33% with IC50 = 115.05 μg/mL), phosphomolybdenum activity (73.43% with IC50 = 75.25 μg/mL), and observing reducing power (0.25) at a concentration of 250 g/mL. Inhibition by the AgNPs against the bacterial strain Staphylococcus aureus was greatest (12 mm). According to the current findings, AgNPs produced by F. desertorum have the highest potential for free radical scavenging and antibacterial activity, which can result in antioxidant and antibiotic agents., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
43. Larvicidal and anti-termite activities of microbial biosurfactant produced by Enterobacter cloacae SJ2 isolated from marine sponge Clathria sp.
- Author
-
Harikrishnan S, Sudarshan S, Sivasubramani K, Nandini MS, Narenkumar J, Ramachandran V, Almutairi BO, Arunkumar P, Rajasekar A, and Jayalakshmi S
- Subjects
- Humans, Animals, Enterobacter cloacae, Cloaca, Larva, Porifera, Culex, Culicidae, Insecticides pharmacology, Isoptera
- Abstract
The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC
50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus., (© 2023. Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
44. Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae.
- Author
-
Murugan R, Haridevamuthu B, Kumar RS, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Animals, Humans, Reactive Oxygen Species metabolism, Larva, Oxidative Stress, Benzhydryl Compounds toxicity, Benzhydryl Compounds metabolism, Zebrafish metabolism, Antioxidants metabolism
- Abstract
Bisphenol A (BPA) leaches from plastic products have become a major inevitable concern among the research society. Human exposure to BPA leads to deleterious effects on multiple organs by the induced hyper inflammatory and oxidative stress responses. Due to the compromised antioxidant mechanism, the brain environment was highly susceptible and required special concern to ameliorate the effects of BPA. Hence, this study investigates the potential of neem-derived semi natural deacetyl epoxyazadiradione (DEA) against the oxidative stress and inflammatory response induced by BPA exposure in N9 cells and zebrafish larvae. The results from the in vitro analyses showed a decrease in cell viability in the MTT assay and a decline in mitochondrial damage in BPA-exposed N9 cells. Further in vivo, results revealed that pre-treatment of DEA to zebrafish larvae has significantly reduced the level of superoxide anion and increased the production of antioxidant enzymes such as SOD, CAT, GST, GPx and GR. We also found a significant decrease in the production of nitric oxide (p < 0.0001) and iNOS gene expression at 150 μM concentration. Further, DEA pre-treatment improved the behaviour of zebrafish larvae by ameliorating the production of the AChE enzyme. In conclusion, DEA protected zebrafish larvae from BPA toxicity by ameliorating oxidative stress and inflammatory responses., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
45. Delineating the protective action of cordycepin against cadmium induced oxidative stress and gut inflammation through downregulation of NF-κB pathway.
- Author
-
Priya PS, Murugan R, Almutairi BO, Arokiyaraj S, Shanjeev P, and Arockiaraj J
- Subjects
- Animals, Down-Regulation, Zebrafish, Oxidative Stress, Inflammation chemically induced, Inflammation drug therapy, Larva, NF-kappa B, Cadmium toxicity
- Abstract
Cadmium (Cd) exposure is known to cause gut inflammation. In this study, we investigated the protective effects of cordycepin, a natural compound with pharmacological properties, against gut inflammation induced by Cd exposure. Using zebrafish larvae and colon cell line models, we examined the impact of cordycepin on Cd-induced toxicity and inflammation. Zebrafish larvae were exposed to Cd (2 µg/mL) and treated with different concentrations of cordycepin (12.5, 25 and 50 µg/mL). Cordycepin treatment significantly reduced Cd-induced embryotoxicity in zebrafish larvae. It also alleviated Cd-induced oxidative stress by reducing reactive oxygen species (ROS), lipid peroxidation and apoptosis. Furthermore, cordycepin treatment normalized the levels of liver-related biomarkers affected due to Cd exposure. Additionally, cordycepin (50 µg/mL) demonstrated a significant reduction in Cd bioaccumulation and downregulated the expression of inflammatory genes in both zebrafish larval gut and colon cell lines. These findings suggest that cordycepin could be an effective agent against Cd-induced gut inflammation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
46. 6-Aminoflavone Activates Nrf2 to Inhibit the Phospho-JNK/TNF-α Signaling Pathway to Reduce Amyloid Burden in an Aging Mouse Model.
- Author
-
Ahmad S, Shah SA, Nishan U, Khan N, Almutairi MH, Fozia F, Jamila N, Almutairi BO, and Ullah Z
- Abstract
In the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2. d-galactose-treated mice (100 mg/kg/day, intravenously) for eight weeks, 3. d-galactose-treated mice (100 mg/kg/day, intravenously for eight weeks) and 6-AF-treated mice (30 mg/kg/day, intravenously for the final four weeks), and 4. 6-AF-treated mice (30 mg/kg/day i.p. for four weeks). We conducted many assays for antioxidant enzymes, including lipid peroxidation, catalase, glutathione (GSH), peroxidase (POD), and sulfoxide dismutase (SOD) (LPO). Western blotting was used to assess protein expression while the Morris water maze (MWM) and Y-maze (YM) were used to study behavior. The findings show that 6-AF greatly improved neuronal synapse and memory impairment brought on by d-galactose and it significantly inhibited BACE1 to reduce the amyloidogenic pathway of A (both amyloid β production and aggregation) by upregulating Nrf2 proteins (validated through molecular docking studies) and suppressing phosphorylated JNK and TNF-α proteins in adult albino mice's brain homogenates. These findings suggest that 6-AF, through the Nrf2/p-JNK/TNF-α signaling pathway, can diminish the oxidative stress caused by d-galactose, as well as the amyloidogenic route of A formation and memory impairment., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
47. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish.
- Author
-
Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, and Arockiaraj J
- Subjects
- Animals, Vascular Endothelial Growth Factor A metabolism, Vascular Endothelial Growth Factors metabolism, Oxidative Stress, Glucose pharmacology, Zebrafish metabolism, Diabetic Retinopathy metabolism
- Abstract
Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
- Published
- 2023
- Full Text
- View/download PDF
48. Correction to: Pro-infammatory cytokine molecules from Boswellia serrate suppresses lipopolysaccharides induced infammation demonstrated in an in-vivo zebrafsh larval model.
- Author
-
Siddhu NSS, Guru A, Kumar RCS, Almutairi BO, Almutairi MH, Juliet A, Vijayakumar TM, and Arockiaraj J
- Published
- 2023
- Full Text
- View/download PDF
49. Luteolin, a promising quorum quencher mitigates virulence factors production in Pseudomonas aeruginosa - In vitro and In vivoapproach.
- Author
-
Nayak SPRR, Boopathi S, Priya PS, Pasupuleti M, Pachaiappan R, Almutairi BO, Arokiyaraj S, and Arockiaraj J
- Subjects
- Animals, Pseudomonas aeruginosa, Luteolin pharmacology, Zebrafish, Quorum Sensing, Inflammation, Superoxide Dismutase metabolism, Anti-Bacterial Agents metabolism, Biofilms, Bacterial Proteins metabolism, Virulence Factors genetics, Virulence Factors metabolism, Pseudomonas Infections drug therapy, Pseudomonas Infections pathology
- Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1β, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
50. Trihydroxy piperlongumine protects aluminium induced neurotoxicity in zebrafish: Behavioral and biochemical approach.
- Author
-
Haridevamuthu B, Raj D, Kesavan D, Muthuraman S, Kumar RS, Mahboob S, Al-Ghanim KA, Almutairi BO, Arokiyaraj S, Gopinath P, and Arockiaraj J
- Subjects
- Animals, Aluminum Chloride, Zebrafish metabolism, Aluminum Compounds toxicity, Chlorides toxicity, Oxidative Stress, Antioxidants pharmacology, Antioxidants metabolism, Aluminum toxicity
- Abstract
Aluminium (Al) is proven to be a potent environmental neurotoxin involved in progressive neurodegeneration. Al primarily induces oxidative stress by free radical generation in the brain, followed by neuronal apoptosis. Antioxidants are promising therapeutic options for Al toxicity. Piperlongumine is traditionally long known for its medicinal properties. Therefore, the present study has been designed to explore the antioxidant role of trihydroxy piperlongumine (THPL) against Al-induced neurotoxicity in the zebrafish model. Zebrafish exposed to AlCl
3 exhibited higher oxidative stress and altered locomotion. Adult fish displayed anxiety comorbid with depression phenotype. THPL increases antioxidant enzyme activity by quenching Al-induced free radicals and lipid peroxidation, thus minimizing oxidative damage in the brain. THPL rescues behavior deficits and improves anxiety-like phenotype in adult fish. Histological alterations caused by Al were also attenuated on administration with THPL. Results of the study demonstrate the neuroprotective role of THPL against Al-induced oxidative damage and anxiety, which could be exploited as a psychopharmacological drug., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.