1. Enhanced hepatoprotective effects of empagliflozin and vitamin D dual therapy against metabolic dysfunction-associated steatohepatitis in mice by boosted modulation of metabolic, oxidative stress, and inflammatory pathways.
- Author
-
Farrash WF, Idris S, Elzubier ME, Khidir EBA, Aslam A, Mujalli A, Almaimani RA, Obaid AA, El-Readi MZ, Alobaidy MA, Salaka A, Shakoori AM, Saleh AM, Minshawi F, Samkari JA, Alshehre SM, and Refaat B
- Subjects
- Animals, Mice, Male, Diabetes Mellitus, Type 2 metabolism, Diabetes Mellitus, Type 2 drug therapy, Diabetes Mellitus, Type 2 complications, Drug Therapy, Combination, Diet, High-Fat adverse effects, Non-alcoholic Fatty Liver Disease drug therapy, Non-alcoholic Fatty Liver Disease metabolism, Inflammation metabolism, Inflammation drug therapy, Signal Transduction drug effects, Oxidative Stress drug effects, Glucosides pharmacology, Glucosides therapeutic use, Sodium-Glucose Transporter 2 Inhibitors pharmacology, Benzhydryl Compounds pharmacology, Liver drug effects, Liver metabolism, Liver pathology, Diabetes Mellitus, Experimental drug therapy, Diabetes Mellitus, Experimental complications, Diabetes Mellitus, Experimental metabolism, Vitamin D pharmacology, Vitamin D analogs & derivatives
- Abstract
Although single treatment with sodium-glucose cotransporter-2 inhibitors (SGLT2i) or vitamin D
3 (VD3 ) inhibited metabolic dysfunction-associated steatohepatitis (MASH) development in diabetic patients, their combination has not been explored previously. Hence, this study investigated the hepatoprotective effects of SGLT2i (empagliflozin) and/or VD3 against MASH in type 2 diabetic mice. Forty Mice were assigned into negative (NC) and positive (PC) controls, SGLT2i, VD3 , and SGLT2i + VD3 groups. All animals, except the NC group, received high-fructose/high-fat diet (8 weeks) followed by diabetes induction. Diabetic mice then received another cycle of high-fructose/high-fat diet (4 weeks) followed by 8 weeks of treatment (five times/week) with SGLT2i (5.1 mg/kg/day) and/or VD3 (410 IU/Kg/day). The PC group demonstrated hyperglycaemia, dyslipidaemia, elevated liver enzymes, and increased non-alcoholic fatty liver disease activity score (NAS) with fibrosis. Hepatic glucose transporting molecule (SGLT2) with lipogenesis (SREBP-1/PPARγ), oxidative stress (MDA/H2 O2 ), inflammation (IL1β/IL6/TNF-α), fibrosis (TGF-β1/α-SMA), and apoptosis (TUNEL/Caspase-3) markers alongside the PI3K/AKT/mTOR pathway increased in the PC group. Conversely, hepatic insulin-dependent glucose transporter (GLUT4), lipolytic (PPARα/INSIG1), antioxidant (GSH/GPx1/SOD1/CAT), and anti-inflammatory (IL-10) molecules with the inhibitor of PI3K/AKT/mTOR pathway (PTEN) decreased in the PC group. Whilst SGLT2i monotherapy outperformed VD3 , their combination showed the best attenuation of hyperglycaemia, dyslipidaemia, and fibrosis with the strongest modulation of hepatic glucose-transporting and lipid-regulatory molecules, PI3K/AKT/mTOR pathway, and markers of oxidative stress, inflammation, fibrosis, and apoptosis. This study is the first to reveal boosted hepatoprotection for SGLT2i and VD3 co-therapy against diabetes-induced MASH, possibly via enhanced metabolic control and modulation of hepatic PI3K/AKT/mTOR, anti-inflammatory, anti-oxidative, and anti-fibrotic pathways., (© 2024 Company of the International Journal of Experimental Pathology (CIJEP).)- Published
- 2024
- Full Text
- View/download PDF