1. Ion Temperature Measurements in the MAST-U Divertor During Steady State Plasmas and ELM Burn Through Phenomena
- Author
-
Damizia, Y., Elmore, S., Verhaegh, K., Ryan, P., Allan, S., Federici, F., Osborne, N., Bradley, J. W., Team, the MAST-U, and Team, the EUROfusion Tokamak Exploitation
- Subjects
Physics - Plasma Physics - Abstract
This study presents ion temperature (\(T_i\)) measurements in the MAST-U divertor, using a Retarding Field Energy Analyzer (RFEA). Steady state measurements were made during an L-Mode plasma with the strike point on the RFEA. ELM measurements were made with the strike point swept over the RFEA. The scenarios are characterized by a plasma current (\(I_p\)) of 750 kA, line average electron density (\(n_e\)) between \(1.6 \times 10^{19}\) and \(4.5 \times 10^{19}\,\text{m}^{-3}\), and Neutral Beam Injection (NBI) power ranging from 1.1 MW to 1.6 MW. The ion temperatures, peaking at approximately 10 eV in steady state, were compared with electron temperatures (\(T_e\)) obtained from Langmuir probes (LP) at the same radial positions. Preliminary findings reveal a \(T_i/T_e\) ratio in the divertor region less than 1 for shot 48008. High temporal resolution measurements captured the dynamics of Edge Localized Modes (ELMs) Burn Through, providing \(T_i\) data as a radial distance from the probe peaking around 20 eV.
- Published
- 2024