1. Effect of alkaline treatment duration on rapeseed protein during pH-shift process: Unveiling physicochemical properties and enhanced emulsifying performance.
- Author
-
Chen C, Liu Z, Xiong W, Yao Y, Li J, and Wang L
- Subjects
- Hydrogen-Ion Concentration, Viscosity, Food Handling, Alkalies chemistry, Plant Proteins chemistry, Emulsions chemistry, Solubility, Emulsifying Agents chemistry, Brassica rapa chemistry, Particle Size, Rheology
- Abstract
This study aims to investigate the influence of alkaline treatment duration (0-5 h) on the physicochemical properties and emulsifying performance of rapeseed protein during pH-shift process. Results showed that a 4-h alkaline treatment significantly reduced the particle size of rapeseed protein and led to a notable decrease in disulfide bond content, as well as alterations in subunit composition. Moreover, solubility of rapeseed protein increased from 18.10 ± 0.13% to 40.44 ± 1.74% post-treatment, accompanied by a ∼ 40% enhancement in emulsifying properties. Morphological analysis revealed superior plasticity and sharper contours in 4-h alkali-treated rapeseed protein emulsions compared to untreated counterparts. Rheological analysis indicated higher viscosity and elasticity in the alkali-treated group. Overall, 4-h alkaline treatment markedly enhanced the multifaceted functional attributes of rapeseed protein during pH-shift process, rendering it a promising emulsifier in the food industry., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF