1. A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes.
- Author
-
Acet Ö, Ali Noma SA, Acet BÖ, Dikici E, Osman B, and Odabaşı M
- Subjects
- Adsorption, Microscopy, Electron, Scanning, Spectroscopy, Fourier Transform Infrared, Asparagine, Molecular Imprinting methods
- Abstract
In this study, a L-asparagine (L-Asn) imprinted membranes (L-Asn-MIPs) were synthesized via molecular imprinting for selective and efficient removal of L-Asn. The L-Asn-MIP membrane was prepared by using acrylamide (AAm) and hydroxyethyl methacrylate (HEMA) as a functional monomer and a comonomer, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The L-Asn adsorption capacity of the membrane was investigated in detail. The maximum L-Asn adsorption capacity was determined as 408.2 mg/g at pH: 7.2, 24 °C. Determination of L-Asn binding behaviors of L-Asn-MIPs also shown with Scatchard analyses. The effect of pH on L-Asn adsorption onto the membrane and also the selectivity and reusability of the L-Asn-MIPs for L-Asn adsorption were determined through L-asparaginase (L-ASNase) enzyme activity measurements. The selectivity of the membrane was investigated by using two different ternary mixtures; L-glycine (L-Gly)/L-histidine (L-His)/L-Asn and L-tyrosin (L-Tyr)/L-cystein(L-Cys)/L-Asn. The obtained results showed that the L-Asn-MIP membranes have a high selectivity towards L-Asn., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF