Rolf Krause, Mark Potse, Sander Verheule, Ali Gharaviri, Nico H.L. Kuijpers, Ulrich Schotten, Angelo Auricchio, Jens Eckstein, Department of Physiology [Maastricht], Maastricht University [Maastricht], Center for Computational Medicine in Cardiology [Lugano], Università della Svizzera italiana = University of Italian Switzerland (USI), University Hospital Basel [Basel], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux], IHU-LIRYC, Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux], Cardiocentro Ticino [Lugano], Universität Zürich [Zürich] = University of Zurich (UZH), Fontys Hogeschool Toegepaste Natuurwetenschappen = Fontys University of Applied Sciences (FONTYS), This work was supported by grants from the European Union, the ITN Network AFibTrainNet, No. 675351, and the ERACoSysMED H2020 ERA-NET Cofound project Systems medicine for diagnosis and stratification of atrial fibrillation to US. This work was also supported by grants from the Swiss National Supercomputing Centre (CSCS) under project ID s668 and s778., European Project: 675351,H2020,H2020-MSCA-ITN-2015,AFib-TrainNet(2015), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, University of Zurich, Schotten, Ulrich, Fysiologie, RS: CARIM - R2 - Cardiac function and failure, Promovendi CD, RS: CARIM - R2.11 - Experimental atrial fibrillation, and Biomedische Technologie
Aims Atrial fibrillation (AF) is a progressive arrhythmia characterized by structural alterations that increase its stability. Both clinical and experimental studies showed a concomitant loss of antiarrhythmic drug efficacy in later stages of AF. The mechanisms underlying this loss of efficacy are not well understood. We hypothesized that structural remodelling may explain this reduced efficacy by making the substrate more three-dimensional. To investigate this, we simulated the effect of sodium (Nathorn)-channel block on AF in a model of progressive transmural uncoupling. Methods and results In a computer model consisting of two cross-connected atrial layers, with realistic atrial membrane behaviour, structural remodelling was simulated by reducing the number of connections between the layers. 100% of endoepicardial connectivity represented a healthy atrium. At various degrees of structural remodelling, we assessed the effect of 60% sodium channel block on AF stability, endo-epicardial electrical activity dissociation (EED), and fibrillatory conduction pattern complexity quantified by number of waves, phase singularities (PSs), and transmural conduction ('breakthrough', BT). Sodium channel block terminated AF in non-remodelled but not in remodelled atria. The temporal excitable gap (EG) and AF cycle length increased at all degrees of remodelling when compared with control. Despite an increase of EED and EG, sodium channel block decreased the incidence of BT because of transmural conduction block. Sodium channel block decreased the number of waves and PSs in normal atrium but not in structurally remodelled atrium. Conclusion This simple atrial model explains the loss of efficacy of sodium channel blockers in terminating AF in the presence of severe structural remodelling as has been observed experimentally and clinically. Atrial fibrillation termination in atria with moderate structural remodelling in the presence of sodium channel block is caused by reduction of AF complexity. With more severe structural remodelling, sodium channel block fails to promote synchronization of the two layers of the model.