5 results on '"Alexis Potie"'
Search Results
2. Controlled Folding of Graphene: GraFold Printing
- Author
-
Ivan Ivanov, Alexis Potie, Emanuele Poliani, Toby Hallam, Mischa Bonn, Amir Shakouri, Janina Maultzsch, Dmitry Turchinovich, Sarah J. Haigh, Hayden Taylor, A. P. Rooney, and Georg S. Duesberg
- Subjects
Electron mobility ,Materials science ,Bioengineering ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,law.invention ,symbols.namesake ,law ,0103 physical sciences ,Perpendicular ,General Materials Science ,010306 general physics ,Spectroscopy ,Graphene ,Mechanical Engineering ,General Chemistry ,Physik (inkl. Astronomie) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Terahertz spectroscopy and technology ,symbols ,Adhesive ,0210 nano-technology ,Contact print ,Raman spectroscopy - Abstract
We have used elastomeric stamps with periodically varying adhesive properties to introduce structure and print folded graphene films. The structure of the induced folds is investigated with scanning probe techniques, high-resolution electron-microscopy, and tip-enhanced Raman spectroscopy. Furthermore, a finite element model is developed to show the fold formation process. Terahertz spectroscopy reveals induced anisotropy of carrier mobility along, and perpendicular to, the graphene folds. Graphene fold printing is a new technique which allows for significant modification of the properties of 2D materials without damaging or chemically modifying them.
- Published
- 2015
- Full Text
- View/download PDF
3. Study of Si Nanowires Growth by CVD-VLS and Physical Properties
- Author
-
Thierry Baron, Florian Dhalluin, Salem Bassem, Billel Salhi, Hicehm Abed, Alexis Potie, Marie Panabière, Sebastien Decossas, Martin Kogelschatz, Laurent Montès, Fabrice Oehler, Pascal Gentile, Nicolas Pauc, Martien Den Hertog, Jean-Luc Rouvière, Pierre Noe, Pierre Ferret, Clot, Marielle, Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Silicon Nanoelectronics Photonics and Structures (SiNaps), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] - Abstract
not Available.
- Published
- 2009
4. The effect of device fabrication on quasi-static elastic behaviour of silicon nanocantilever arrays
- Author
-
Peter Gleeson, Johann P. de Silva, Chytra Pawashe, Alexis Potie, John J. Boland, Graham L. W. Cross, and Kevin Lin
- Subjects
Nanoelectromechanical systems ,Cantilever ,Materials science ,Mechanical Engineering ,Nanocantilever ,Mechanical engineering ,Stiffness ,Electronic, Optical and Magnetic Materials ,Mechanics of Materials ,Bending stiffness ,Electronic engineering ,medicine ,Restoring force ,Electrical and Electronic Engineering ,medicine.symptom ,Beam (structure) ,Leakage (electronics) - Abstract
As CMOS technology scaling continues, leakage current is increasingly degrading energy efficiency. The leakage problem can potentially be addressed by nanoelectromechanical (NEMS) relay technology, where the off state leakage current is virtually zero. These devices incorporate a suspended nanobeam which is drawn across a gap to make contact in similar fashion to a traditional relay. The properties of this nanobeam must be carefully engineered to minimise stiffness (hence operating voltage), while simultaneously maintaining sufficient restoring force to overcome the adhesion forces at the contact surface which are significant at the nanoscale. To engineer the beam stiffness, detailed understanding of the beam composition and geometry, combined with accurate modelling is required. Simple analytical models over-estimate the stiffness of the cantilever beam along its length, and both analytical and FEA models which account for the manufacturing induced geometrical complexity are required. In this work, spatial force mapping of fabricated beams was used to experimentally validate analytical and FEA models incorporating detailed beam dimensions. An excellent fit was achieved, and this provides a method for targeting beam properties in a NEMS device.
- Published
- 2015
- Full Text
- View/download PDF
5. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires.
- Author
-
Xin Xu, Alexis Potie, Rudeesun Songmuang, Jae Woo, Bogdan Bercu, Thierry Baron, Bassem Salem, and Laurent Montes
- Subjects
- *
ATOMIC force microscopy , *CROSS-sectional method , *PIEZOELECTRICITY , *NANOSTRUCTURED materials , *GALLIUM nitride , *NANOWIRES , *SURFACE coatings , *ELECTRIC currents , *ENERGY conversion , *NANOELECTROMECHANICAL systems - Abstract
We present an improved atomic force microscopy (AFM) method to study the piezoelectric properties of nanostructures. An AFM tip is used to deform a free-standing piezoelectric nanowire. The deflection of the nanowire induces an electric potential via the piezoelectric effect, which is measured by the AFM coating tip. During the manipulation, the applied force, the forcing location and the nanowire's deflection are precisely known and under strict control. We show the measurements carried out on intrinsic GaN and n-doped GaN-AlN-GaN nanowires by using our method. The measured electric potential, as high as 200 mV for n-doped GaN-AlN-GaN nanowire and 150 mV for intrinsic GaN nanowire, have been obtained, these values are higher than theoretical calculations. Our investigation method is exceptionally useful to thoroughly examine and completely understand the piezoelectric phenomena of nanostructures. Our experimental observations intuitively reveal the great potential of piezoelectric nanostructures for converting mechanical energy into electricity. The piezoelectric properties of nanostructures, which are demonstrated in detail in this paper, represent a promising approach to fabricating cost-effective nano-generators and highly sensitive self-powered NEMS sensors. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.