1. Prediction of inclusion body solubilization from shaken to stirred reactors
- Author
-
Sabrina Mayer, Rainer Hahn, Alexandru Trefilov, Gerhard Sekot, Astrid Dürauer, Cornelia Walther, and Alois Jungbauer
- Subjects
Chemistry ,Diffusion ,Kinetics ,Mixing (process engineering) ,Reynolds number ,Continuous stirred-tank reactor ,Bioengineering ,equipment and supplies ,Applied Microbiology and Biotechnology ,symbols.namesake ,Chemical engineering ,Yield (chemistry) ,Scientific method ,SCALE-UP ,symbols ,Biotechnology - Abstract
Inclusion bodies (IBs) were solubilized in a µ-scale system using shaking microtiter plates or a stirred tank reactor in a laboratory setting. Characteristic dimensionless numbers for mixing, the Phase number Ph and Reynolds number Re did not correlate with the kinetics and equilibrium of protein solubilization. The solubilization kinetics was independent of the mixing system, stirring or shaking rate, shaking diameter, and energy input. Good agreement was observed between the solubilization kinetics and yield on the µ-scale and laboratory setting. We show that the IB solubilization process is controlled predominantly by pore diffusion. Thus, for the process it is sufficient to keep the IBs homogeneously suspended, and additional power input will not improve the process. The high-throughput system developed on the µ-scale can predict solubilization in stirred reactors up to a factor of 500 and can therefore be used to determine optimal solubilization conditions on laboratory and industrial scale.
- Published
- 2013
- Full Text
- View/download PDF