11 results on '"Alexandre Courac"'
Search Results
2. Ice‐Templating: Integrative Ice Frozen Assembly to Tailor Pore Morphology of Energy Storage and Conversion Devices
- Author
-
Feng Zhao, Lin Lin, Jian Zhang, Jing Liu, Junyou Shi, Yann Le Godec, and Alexandre Courac
- Subjects
Mechanics of Materials ,General Materials Science ,Industrial and Manufacturing Engineering - Published
- 2023
- Full Text
- View/download PDF
3. The Effect of Doping on the Lattice Parameter and Properties of Cubic Boron Nitride
- Author
-
Vladimir A. Mukhanov, Alexandre Courac, Vladimir L. Solozhenko, Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13), and Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Silicon ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,law.invention ,Inorganic Chemistry ,chemistry.chemical_compound ,Lattice constant ,law ,Electrical resistivity and conductivity ,0103 physical sciences ,General Materials Science ,Crystallization ,010302 applied physics ,Condensed Matter - Materials Science ,Doping ,Materials Science (cond-mat.mtrl-sci) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Supercritical fluid ,chemistry ,Boron nitride ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Beryllium ,0210 nano-technology - Abstract
International audience; The effect of doping of cubic boron nitride with beryllium, silicon, sulfur and magnesium on the lattice parameters, electrical conductivity and ESR spectra has been studied. It is established that the degree of doping increases significantly in the case of crystallization of cubic boron nitride from BN solutions in supercritical ammonia at 3.9-4.2 GPa and 1100°C in comparison with the conventional synthesis from melts of the Mg–B–N system at 4.2 GPa and 1400°C. Doping with silicon and beryllium results in semiconductor properties of cubic boron nitride.
- Published
- 2020
- Full Text
- View/download PDF
4. Heat capacities of nanostructured wurtzite and rock salt ZnO: challenges of ZnO nano-phase diagram
- Author
-
A. N. Baranov, Vladimir L. Solozhenko, Petr S. Sokolov, Alexandre Courac, Konstantin V. Kamenev, Felix Yu. Sharikov, Centre for Science at Extreme Conditions, The University of Edinburgh, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Department of Chemistry, Lomonosov Moscow State University, Lomonosov Moscow State University (MSU), Saint Petersburg Mining University, Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13), University of Edinburgh, and Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
heat capacity ,Materials science ,nanostructure ,chemistry.chemical_element ,FOS: Physical sciences ,02 engineering and technology ,Zinc ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Heat capacity ,Phase (matter) ,Nano ,Phase diagram ,Wurtzite crystal structure ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,zinc oxide ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Nanocrystalline material ,0104 chemical sciences ,phase diagram ,high pressure ,Chemical engineering ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; Low-temperature heat capacities (Cp) of nanostructured rock salt (rs-ZnO) and wurtzite (w-ZnO) polymorphs of zinc oxide were measured in the 2-315 K temperature range. No significant influence of nanostructuring on Cp of w-ZnO has been observed. The measured Cp of rock salt ZnO is lower than that of wurtzite ZnO below 100 K and is higher above this temperature. Using available thermodynamic data, we established that the equilibrium pressure between nanocrystalline w-ZnO and rs-ZnO is close to 4.6 GPa at 300 K (half as much as the onset pressure of direct phase transformation) and slightly changes with temperature up to 1000 K.
- Published
- 2021
- Full Text
- View/download PDF
5. Thermoelastic equation of state and melting of Mg metal at high pressure and high temperature
- Author
-
Nicolas Guignot, Vladimir L. Solozhenko, Yann Le Godec, Wilson A. Crichton, Alexandre Courac, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), and ANR-17-CE08-0038,POLYCARBS,Synthèse des carbures aux réseaux rigides de carbone(2017)
- Subjects
Equation of state ,Materials science ,Murnaghan equation of state ,General Physics and Astronomy ,Thermodynamics ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Thermal expansion ,Electrical resistivity and conductivity ,High pressure and temperature ,0103 physical sciences ,ddc:530 ,Magnesium ,010302 applied physics ,Bulk modulus ,Condensed Matter - Materials Science ,X-ray Diffraction ,Materials Science (cond-mat.mtrl-sci) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Volume (thermodynamics) ,Isobar ,0210 nano-technology ,Ambient pressure - Abstract
Journal of applied physics 127(5), 055903 - (2020). doi:10.1063/1.5135649, The p-V-T equation of state of magnesium metal has been measured up to 20 GPa and 1500 K using both multianvil and opposite anvil techniques combined with synchrotron x-ray diffraction. To fit the experimental data, the model of Anderson–Grüneisen has been used with fixed parameter δT. The 300-K bulk modulus of B0 = 32.5(1) GPa and its first pressure derivative, B0′ = 3.73(2), have been obtained by fitting available data up to 20 GPa to the Murnaghan equation of state. Thermal expansion at ambient pressure has been described using second order polynomial with coefficients a = 25(2) × 10−6 K−1 and b = 9.4(4) × 10−9 K−2. The parameter describing simultaneous pressure and temperature impact on the thermal expansion coefficient (and, therefore, volume) is δT = 1.5(5). The good agreement between fitted and experimental isobars has been achieved to relative volumes of 0.75. The Mg melting observed by x-ray diffraction and in situ electrical resistivity measurements confirms previous results and additionally confirms the p-T estimations in the vicinity of melting., Published by American Inst. of Physics, Melville, NY
- Published
- 2020
- Full Text
- View/download PDF
6. High-pressure high-temperature crystallography of graphite intercalation compounds
- Author
-
Alexandre Courac
- Subjects
Inorganic Chemistry ,Structural Biology ,General Materials Science ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Biochemistry - Published
- 2021
- Full Text
- View/download PDF
7. Crystallography of silicon element: stable and metastable crystalline forms
- Author
-
Alexandre Courac
- Subjects
Inorganic Chemistry ,Structural Biology ,General Materials Science ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Biochemistry - Published
- 2021
- Full Text
- View/download PDF
8. High-Pressure Melting Curve of Zintl Sodium Silicide Na4Si4 by In Situ Electrical Measurements
- Author
-
Ram Kumar, Cristina Coelho-Diogo, David Portehault, H. Moutaabbid, Alexandre Courac, Carlos Renero-Lecuna, Yann Le Godec, Christel Gervais, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Novel Advanced Nano-Objects (LCMCP-NANO), Matériaux Hybrides et Nanomatériaux (LCMCP-MHN), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des matériaux de Paris-Centre (IMPC), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (LCMCP-SMiLES), French Région Ile de France - SESAME, ANR-17-ERC2-0032,MOLTEN,Mélanges de sels fondus vers des nanomatériaux avancés(2017), and ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
- Subjects
Work (thermodynamics) ,010405 organic chemistry ,Analytical chemistry ,Ionic bonding ,Conductance ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Melting curve analysis ,0104 chemical sciences ,Ion ,Inorganic Chemistry ,Sodium silicide ,chemistry.chemical_compound ,chemistry ,Melting point ,Electrical measurements ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; The inorganic chemistry of the Na–Si system at high pressure is fascinating, with a large number of interesting compounds accessible in the industrial pressure scale, below 10 GPa. In particular, Na4Si4 is stable in this whole pressure range and thus plays an important role in understanding the thermodynamics and kinetics underlying materials synthesis at high pressures and high temperatures. In the present work, the melting curve of the Zintl compound Na4Si4 made of Na+ and Si44– tetrahedral cluster ions is studied at high pressures up to 5 GPa, by using in situ electrical measurements. During melting, the insulating Na4Si4 solid transforms into an ionic conductive liquid that can be probed through the conductance of the whole high-pressure cell, i.e., the system constituted of the sample, the heater, and the high-pressure assembly. Na4Si4 melts congruently in the studied pressure range, and its melting point increases with pressure with a positive slope dTm/dp of 20(4) K/GPa.
- Published
- 2019
- Full Text
- View/download PDF
9. High-Pressure Melting Curve of Zintl Sodium Silicide Na
- Author
-
Alexandre, Courac, Yann, Le Godec, Carlos, Renero-Lecuna, Hicham, Moutaabbid, Ram, Kumar, Cristina, Coelho-Diogo, Christel, Gervais, and David, Portehault
- Abstract
The inorganic chemistry of the Na-Si system at high pressure is fascinating, with a large number of interesting compounds accessible in the industrial pressure scale, below 10 GPa. In particular, Na
- Published
- 2019
10. In Situ High-Pressure Synthesis of New Outstanding Light-Element Materials under Industrial P-T Range
- Author
-
Yann Le Godec, Alexandre Courac, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and ANR-17-CE08-0038,POLYCARBS,Synthèse des carbures aux réseaux rigides de carbone(2017)
- Subjects
Technology ,Materials science ,synthesis ,Context (language use) ,Review ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Lead (geology) ,synchrotron ,General Materials Science ,Scaling ,Microscopy ,QC120-168.85 ,business.industry ,Scale (chemistry) ,QH201-278.5 ,in situ ,Diamond ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Engineering (General). Civil engineering (General) ,021001 nanoscience & nanotechnology ,Engineering physics ,X-ray diffraction ,TK1-9971 ,0104 chemical sciences ,high pressure ,Range (mathematics) ,Descriptive and experimental mechanics ,chemistry ,Boron nitride ,engineering ,Electrical engineering. Electronics. Nuclear engineering ,TA1-2040 ,Photonics ,0210 nano-technology ,business - Abstract
International audience; High-pressure synthesis (which refers to pressure synthesis in the range of 1 to several GPa) adds a promising additional dimension for exploration of compounds that are inaccessible to traditional chemical methods and can lead to new industrially outstanding materials. It is nowadays a vast exciting field of industrial and academic research opening up new frontiers. In this context, an emerging and important methodology for the rapid exploration of composition-pressure-temperature-time space is the in situ method by synchrotron X-ray diffraction. This review introduces the latest advances of high-pressure devices that are adapted to X-ray diffraction in synchrotrons. It focuses particularly on the “large volume” presses (able to compress the volume above several mm3 to pressure higher than several GPa) designed for in situ exploration and that are suitable for discovering and scaling the stable or metastable compounds under “traditional” industrial pressure range (3–8 GPa). We illustrated the power of such methodology by (i) two classical examples of “reference” superhard high-pressure materials, diamond and cubic boron nitride c-BN; and (ii) recent successful in situ high-pressure syntheses of light-element compounds that allowed expanding the domain of possible application high-pressure materials toward solar optoelectronic and infra-red photonics. Finally, in the last section, we summarize some perspectives regarding the current challenges and future directions in which the field of in situ high-pressure synthesis in industrial pressure scale may have great breakthroughs in the next years.
- Published
- 2021
- Full Text
- View/download PDF
11. High-pressure synthesis of superhard and ultrahard materials
- Author
-
Vladimir L. Solozhenko, Alexandre Courac, Yann Le Godec, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13), and Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Condensed Matter - Materials Science ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,high-pressure synthesis ,superhard phases ,02 engineering and technology ,Trigonal crystal system ,021001 nanoscience & nanotechnology ,01 natural sciences ,Engineering physics ,High pressure ,0103 physical sciences ,ultrahard phases ,in situ studies ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology - Abstract
International audience; A brief overview on high-pressure synthesis of superhard and ultrahard materials is presented in this tutorial paper. Modern high-pressure chemistry represents a vast exciting area of research which can lead to new industrially important materials with exceptional mechanical properties. This field is only just beginning to realize its huge potential, and the image of "terra incognita" is not misused. We focus on three facets of this expanding research field by detailing: (i) the most promising chemical systems to explore (i.e. "where to search"); (ii) the various methodological strategies for exploring these systems (i.e. "how to explore"); (iii) the technological and conceptual tools to study the latter (i.e. "the research tools"). These three aspects that are crucial in this research are illustrated by examples of the recent results on high pressure-high temperature synthesis of novel super-and ultrahard phases (orthorhombic γ-B 28 , diamond-like BC 5 , rhombohedral B13N2 and cubic ternary B-C-N phases). Finally, some perspectives of this research area are briefly reviewed.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.