1. Protein Co-Enrichment Analysis of Extracellular Vesicles
- Author
-
Shen, Molly L., Jin, Zijie, Martel, Rosalie, Wallucks, Andreas, Alexandre, Lucile, DeCorwin-Martin, Philippe, de Araujo, Lorenna Oliveira Fernandes, Ng, Andy, and Juncker, David
- Subjects
Quantitative Biology - Quantitative Methods - Abstract
Extracellular Vesicles (EVs) carry cell-derived proteins that confer functionality and selective cell uptake. However, whether proteins are packaged stochastically or co-enriched within individual EVs, and whether co-enrichment fluctuates under homeostasis and disease, has not been measured. EV abundance and protein global relative expression have been qualified by bulk analysis. Meanwhile, co-enrichment is not directly accessible via bulk measurement and has not been reported for single EV analysis. Here, we introduce the normalized index of co-enrichment (NICE) to measure protein co-enrichment. NICE was derived by (i) capturing EVs based on the expression of a membrane-bound protein, (ii) probing for the co-expression of a second protein at the population level - EV integrity underwrites the detection of single EV co-expression without the need to resolve single EVs - and (iii) normalizing measured values using two universal normalization probes. Axiomatically, NICE = 1 for stochastic inclusion or no overall co-enrichment, while for positive and negative co-enrichment NICE > 1 or < 1, respectively. We quantified the NICE of tetraspanins, growth factor receptors and integrins in EVs of eight breast cancer cell lines of varying metastatic potential and organotropism, combinatorially mapping up to 104 protein pairs. Our analysis revealed protein enrichment and co-expression patterns consistent with previous findings. For the organotropic cell lines, most protein pairs were co-enriched on EVs, with the majority of NICE values between 0.2 to 11.5, and extending from 0.037 to 80.4. Median NICE were either negative, neutral or positive depending on the cells. NICE analysis is easily multiplexed and is compatible with microarrays, bead-based and single EV assays. Additional studies are needed to deepen our understanding of the potential and significance of NICE for research and clinical uses.
- Published
- 2023