For a given field F of characteristic different from 2 and $$a,b,d\in F^*$$ we construct an invariant $$\mathrm{inv}$$ for an element $$D\in \,_2\mathrm{Br}(F(\sqrt{a},\sqrt{b},\sqrt{d})/F)$$ . This invariant takes value in the quotient group $$\begin{aligned} H^3(F,\mu _2)/D\cup {\mathrm{N}_{\mathrm{F}\left( \sqrt{\mathrm{d}}, \sqrt{\mathrm{ab}}\right) /\mathrm{F}}}F\left( \sqrt{d},\sqrt{ab}\right) ^*. \end{aligned}$$ Let k be a field, let $$k(\sqrt{a},\sqrt{b},\sqrt{d})/k$$ be a triquadratic field extension. We apply the invariant $$\mathrm{inv}$$ and a few deep results from algebraic geometry and K-theory to construct a field extension K/k with $$\mathrm{cd}_2 K=3$$ , and an indecomposable cross product algebra of exponent 2 with respect to the extension $$K(\sqrt{a},\sqrt{b},\sqrt{d})/K$$ . Using the invariant $$\mathrm{inv}$$ , we also prove the following odd degree descent statement: Assume $$D\in \,_2\mathrm{Br}(F)$$ , $$b,d\in F^*$$ , L/F is an odd degree extension. Assume also that $$D_{L(\sqrt{b},\sqrt{d})}=Q_{L(\sqrt{b},\sqrt{d})}$$ , where Q is a quaternion algebra defined over L. Then there exists a quaternion algebra $$\widetilde{Q}$$ defined over F such that $$D_{F(\sqrt{b},\sqrt{d})}=\widetilde{Q}_{F(\sqrt{b},\sqrt{d})}$$ . As a consequence we get that if $$\phi \in I^2(F)$$ is a form such that $${(\phi _{L(\sqrt{b},\sqrt{d})})}_{an}$$ is defined over L, and $$\dim {(\phi _{L(\sqrt{b},\sqrt{d})})}_{an} =4$$ , then $${(\phi _{F(\sqrt{b},\sqrt{d})})}_{an}$$ is defined over F.