1. Repeatability and Reproducibility Uncertainty in Magnetic Resonance-Based Electric Properties Tomography of a Homogeneous Phantom
- Author
-
Alessandro Arduino, Francesca Pennecchi, Ulrich Katscher, Maurice Cox, and Luca Zilberti
- Subjects
electric properties tomography ,magnetic resonance imaging ,phantoms ,quantitative imaging ,uncertainty ,Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Uncertainty assessment is a fundamental step in quantitative magnetic resonance imaging because it makes comparable, in a strict metrological sense, the results of different scans, for example during a longitudinal study. Magnetic resonance-based electric properties tomography (EPT) is a quantitative imaging technique that retrieves, non-invasively, a map of the electric properties inside a human body. Although EPT has been used in some early clinical studies, a rigorous experimental assessment of the associated uncertainty has not yet been performed. This paper aims at evaluating the repeatability and reproducibility uncertainties in phase-based Helmholtz-EPT applied on homogeneous phantom data acquired with a clinical 3 T scanner. The law of propagation of uncertainty is used to evaluate the uncertainty in the estimated conductivity values starting from the uncertainty in the acquired scans, which is quantified through a robust James–Stein shrinkage estimator to deal with the dimensionality of the problem. Repeatable errors are detected in the estimated conductivity maps and are quantified for various values of the tunable parameters of the EPT implementation. The spatial dispersion of the estimated electric conductivity maps is found to be a good approximation of the reproducibility uncertainty, evaluated by changing the position of the phantom after each scan. The results underpin the use of the average conductivity (calculated by weighting the local conductivity values by their uncertainty and taking into account the spatial correlation) as an estimate of the conductivity of the homogeneous phantom.
- Published
- 2023
- Full Text
- View/download PDF