1. Applying infectious disease forecasting to public health: a path forward using influenza forecasting examples
- Author
-
Chelsea S. Lutz, Mimi P. Huynh, Monica Schroeder, Sophia Anyatonwu, F. Scott Dahlgren, Gregory Danyluk, Danielle Fernandez, Sharon K. Greene, Nodar Kipshidze, Leann Liu, Osaro Mgbere, Lisa A. McHugh, Jennifer F. Myers, Alan Siniscalchi, Amy D. Sullivan, Nicole West, Michael A. Johansson, and Matthew Biggerstaff
- Subjects
Decision making ,Disease outbreaks ,Emergency preparedness ,Forecast ,Infectious disease ,Influenza ,Public aspects of medicine ,RA1-1270 - Abstract
Abstract Background Infectious disease forecasting aims to predict characteristics of both seasonal epidemics and future pandemics. Accurate and timely infectious disease forecasts could aid public health responses by informing key preparation and mitigation efforts. Main body For forecasts to be fully integrated into public health decision-making, federal, state, and local officials must understand how forecasts were made, how to interpret forecasts, and how well the forecasts have performed in the past. Since the 2013–14 influenza season, the Influenza Division at the Centers for Disease Control and Prevention (CDC) has hosted collaborative challenges to forecast the timing, intensity, and short-term trajectory of influenza-like illness in the United States. Additional efforts to advance forecasting science have included influenza initiatives focused on state-level and hospitalization forecasts, as well as other infectious diseases. Using CDC influenza forecasting challenges as an example, this paper provides an overview of infectious disease forecasting; applications of forecasting to public health; and current work to develop best practices for forecast methodology, applications, and communication. Conclusions These efforts, along with other infectious disease forecasting initiatives, can foster the continued advancement of forecasting science.
- Published
- 2019
- Full Text
- View/download PDF