1. Heparan sulfate regulates the fate decisions of human pluripotent stem cells.
- Author
-
Syangtan D, Al Mahbuba D, Masuko S, Li Q, Elton AC, Zaltsman Y, Wrighton PJ, Xia K, Han X, Ouyang Y, Zhang F, Linhardt RJ, and Kiessling LL
- Abstract
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1
-/- hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells. Intriguingly, Activin/Nodal signaling is also compromised in EXT1-/- hPSCs, highlighting HS's previously unexplored involvement in this pathway. As a result, EXT1-/- hPSCs fail to differentiate into mesoderm or endoderm lineages. Unexpectedly, HS is dispensable for early ectodermal differentiation of hPSCs but still critical in generating motor neurons. Those derived from HS-deficient hPSCs lack proper neuronal projections and show alterations in axonogenesis gene expression. Thus, our study uncovers expected and unexpected mechanistic roles of HS in hPSC fate decisions., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024. Published by Elsevier Inc.)- Published
- 2024
- Full Text
- View/download PDF