1. Burden of Mendelian disorders in a large Middle Eastern biobank.
- Author
-
Aamer W, Al-Maraghi A, Syed N, Gandhi GD, Aliyev E, Al-Kurbi AA, Al-Saei O, Kohailan M, Krishnamoorthy N, Palaniswamy S, Al-Malki K, Abbasi S, Agrebi N, Abbaszadeh F, Akil ASA, Badii R, Ben-Omran T, Lo B, Mokrab Y, and Fakhro KA
- Subjects
- Infant, Newborn, Humans, Biological Specimen Banks, Gene Frequency, Phenotype, Homozygote, Diabetes Mellitus, Type 2
- Abstract
Background: Genome sequencing of large biobanks from under-represented ancestries provides a valuable resource for the interrogation of Mendelian disease burden at world population level, complementing small-scale familial studies., Methods: Here, we interrogate 6045 whole genomes from Qatar-a Middle Eastern population with high consanguinity and understudied mutational burden-enrolled at the national Biobank and phenotyped for 58 clinically-relevant quantitative traits. We examine a curated set of 2648 Mendelian genes from 20 panels, annotating known and novel pathogenic variants and assessing their penetrance and impact on the measured traits., Results: We find that 62.5% of participants are carriers of at least 1 known pathogenic variant relating to recessive conditions, with homozygosity observed in 1 in 150 subjects (0.6%) for which Peninsular Arabs are particularly enriched versus other ancestries (5.8-fold). On average, 52.3 loss-of-function variants were found per genome, 6.5 of which affect a known Mendelian gene. Several variants annotated in ClinVar/HGMD as pathogenic appeared at intermediate frequencies in this cohort (1-3%), highlighting Arab founder effect, while others have exceedingly high frequencies (> 5%) prompting reconsideration as benign. Furthermore, cumulative gene burden analysis revealed 56 genes having gene carrier frequency > 1/50, including 5 ACMG Tier 3 panel genes which would be candidates for adding to newborn screening in the country. Additionally, leveraging 58 biobank traits, we systematically assess the impact of novel/rare variants on phenotypes and discover 39 candidate large-effect variants associating with extreme quantitative traits. Furthermore, through rare variant burden testing, we discover 13 genes with high mutational load, including 5 with impact on traits relevant to disease conditions, including metabolic disorder and type 2 diabetes, consistent with the high prevalence of these conditions in the region., Conclusions: This study on the first phase of the growing Qatar Genome Program cohort provides a comprehensive resource from a Middle Eastern population to understand the global mutational burden in Mendelian genes and their impact on traits in seemingly healthy individuals in high consanguinity settings., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF